Библиографическое описание:

Гутарева Н. Ю., Виноградов Н. В. К вопросу о тепловых эффектах в реакциях окисления вольфрамата железа // Молодой ученый. — 2015. — №8. — С. 48-51.

Автором статьи доказывается необходимость расчета тепловых эффектов реакции между вольфраматом железа, нитратом натрия и карбонатом натрия, для выявления возможности проведения высокотемпературного синтеза (СВС) и определение оптимальных соотношений реагентов, с точки зрения развития современной науки. Основное внимание в работе автор акцентирует на то, что концентрационные пределы, при которых ожидается самораспространяющийся высокотемпературный синтез (СВС), характеризуются весовыми соотношениями FеWO4:NaNO3:Na2CO3,как 17,87: 1:(0÷5,61) для реакций с выделением молекулярного азота; а для реакций с выделением монооксида азота FеWO4:NaNO3:Na2CO3соответственно10,87:1:(0÷3,12).

Ключевые слова:химическая реакция, нитрат натрия и карбонат натрия, реагент, вольфрамат железа, окислителели, высокотемпературный синтез.

 

Так как соотношение окислителя к восстановителю менять нельзя, то так же, как и в предыдущем случае, можно уменьшать количество карбоната натрия с получением в качестве дополнительного продукта вольфрамового ангидрида. При полном отсутствии карбоната натрия возможна реакция:

6FеWO4 + 2NaNO3 = 3Fe2O3 + 5WO3+ Na2WO4 +2NО                                             (9).

В общем виде при варьировании количества карбоната натрия можно расписать серию реакций, общий вид которых будет таким:

6FеWO4 + 2NaNO3 + nNa2CO3 = 3Fe2O3 + (5-n) WO3 +(n+1)Na2WO4 + 2NО + nCO2   (10).

Рассчитаем значения стандартных энтальпий данных серий реакций (7) и (10) при различных значениях n (табл.1).

Таблица 1

n

0

1

2

3

4

5

6

7

8

9

ΔНО (7) реакции кдж

-756,6

-725,2

-693,5

-661,8

-630,1

-598,4

-567,1

-534,6

-503,3

-471,6

ΔНО(10) реакции кдж

-181,2

-149,5

-117,8

-85,7

-54,4

-22,7

-

-

-

-

 

Из таблицы видно, что уменьшение количества карбоната натрия в реакционной смеси приводит к увеличению термоэффекта. Представим в виде графиков изменение теплового эффекта реакций от мольного содержания карбоната натрия (рис. 1).

Рис.1. Изменение энтальпии реакций (7) и (10) в зависимости от количества карбоната натрия (n), в расчете на один моль вольфрамата железа

 

Графики имеют линейный характер и могут быть представлены в виде функций ΔНО=kn+b, где k = 3,1688 и b = — 75,682, для реакции (7), а k = 5,2852 и b = — 30,194 для реакции(10).

По сравнению с реакциями (7), тепловыделение в реакциях (10) на один моль вольфрамата железа в 2,5–12,5 раза меньше (сравнение дается для максимальных и минимальных содержаний карбоната натрия). Для проведения самораспространяющегося синтеза в нашем случае очень важно чтобы началось плавление самой низкоплавкой фазы. При этом будет достигнут оптимальный контакт с тугоплавкими компонентами. Даже без учета теплоемкости всех компонентов можно увидеть, что реакция n = 5 (10) и, возможно, n = 6 (10) без предварительного подогрева реакционной смеси не пойдёт. Самый низкоплавкий компонент NaNO3 имеет температуру плавления 308О С и мольную теплоту плавления 16 кдж. В реакции используется два моля NaNO3, следовательно, на плавление потребуется 32 кдж. В реакции n = 5 (10) тепловыделение составляет 22,7 кдж. Поэтому предварительно необходимо подогреть реакционную шихту минимум до 278–304О С, то есть до плавления эвтектик, которые существуют в системе карбонат натрия — нитрат натрия [4].

В результате проведенных расчетов можно определить концентрационные пределы для всех компонентов, при которых возможно протекание реакций с экзотермическим эффектом. Для реакций (7) весовые соотношения компонентов FеWO4: NaNO3:Na2CO3 находятся в пределах 17,87:1:(0÷5,61), а для реакций (10) в пределах 10,87:1:(0÷3,12) соответственно. Для более точной оценки возможности протекания СВС синтеза проведем оценку удельной теплоемкости компонентов реакций, и на этой основе определим конечные температуры реакционных смесей. Приведем стандартные удельные теплоемкости для исходных и конечных продуктов (табл.3) [2,3].

Таблица 2

 

FеWO4

Na2CO3

NaNO3

Fe2O3

Na2WO4

NaNO2

WO3

NO

CO2

N2

СрО Дж/м К

114,9

112,2

93

103,8

139,95

93,19

73,85

29,9

37,11

29,1

 

Приведем также данные расчетов по суммарной удельной теплоемкости реакционной смеси по продуктам реакции для серии реакций (7) и (10, а также подъем температуры ожидаемый в зоне реакции (табл.4).

Таблица 3

n

0

1

2

3

4

5

6

7

8

9

СрОΣпродуктов реакции(7) кдж·К-1

1,35

1,46

1,56

1,62

1,77

1,87

1,97

2,08

2,18

2,28

ΔТ реакции(7) ОС

563

500

445

402

355

318

285

255

228

204

СрОΣпродуктов реакции(10) кдж·К-1

0,74

0,98

1,09

1,19

1,29

1,40

-

-

-

-

ΔТ реакции(10) ОС

245

152

108

72

42

16

-

-

-

-

 

Для серии реакций (10) подъем температуры, ожидаемый в зоне реакции, недостаточен для плавления нитрата натрия. Проведение этих реакций возможно только при предварительном прогреве исходной реакционной шихты. Результаты расчетов подъема температуры для реакций (7) и (10) в зависимости от мольной добавки карбоната натрия представлены в виде графиков на рис 2.

Рис. 2. Зависимость расчетного изменения температуры реакционной смеси от мольного количества карбоната натрия в результате проведения экзотермических реакций (7) и (10).

 

Анализ изменения температуры в реакциях (7) и (10) показал, что форма зависимости ΔТ от мольного содержания карбоната натрия соответствует формуле ΔТ = (k1n+b) / (k2n-c) для расчетов, проведенных по теплоемкостям и энтальпиям образования исходных компонентов смеси и продуктов реакции.

Выводы:

1.                  Для реакций, в результате которых, получается монооксид азота необходим предварительный нагрев реакционной смеси до температуры не менее 300О С.

2.                  Концентрационные пределы, при которых ожидается самораспространяющийся высокотемпературный синтез (СВС), характеризуются весовыми соотношениями FеWO4:NaNO3:Na2CO3,как 17,87: 1:(0÷5,61) для реакций с выделением молекулярного азота; а для реакций с выделением монооксида азота FеWO4: NaNO3:Na2CO3 соответственно10,87:1:(0÷3,12).

 

Литература:

 

1.                  Гутарева Н. Ю., Виноградов Н. В. Thermal effects in the oxidation of iron in the Tungstate treatment with sodium nitrate in the presence of sodium carbonate — труды конференции материалы международного симпозиума LFPM-32014. г. Ростов-на-Дону — г. Туапсе, 2–6 сентября 2014 год Выпуск 3, Том 1–386 с. — С. 147–151.

2.                  Гутарева Н. Ю., Сыродой С. В., Соломатов В. В. Concentration organic components in the hydrocarbon fuel particles conditions and characteristic of ignition. EPJ Web of Conferences 76, 01018 (2014). — 01018 — p.6.

3.                  Гутарева Н. Ю., Сыродой С. В., Соломатов В. В. Modelling of heat and mass transfer to solve the problem of particle ignition water-coal fuel. EPJ Web of Conferences 76, 01018 (2014). — 01018 — p.6. IOP Conf. Series: Materials Science and Engineering 66 (2014) 012040

4.                  Гутарева Н. Ю., Сыродой С. В., Соломатов В. В. Effect of structural heterogeneity water-coal fuel conditions and characteristics of ignition. EPJ Web of Conferences Volume82, 2015. — 01037 — p.5. IOP Conf. Series: Thermophysical Basis of Energy Technologies 66 (2014) 012040

5.                  Химия и технология редких и рассеянных элементов. Часть 3. Под ред. К. А. Большакова. — М.: Высшая школа, 1978. — 320 с.

6.                  Краткий химический справочник. Рабинович В. А., Хавин З. Я. Под ред. А. А. Потехина и А. И. Ефимова. — Л.: Химия, 1991. — 432 с.

7.                  Термические константы веществ. Выпуск 7, Часть 1. Под ред. В. П. Глушко. М.: Высшая школа, 1978. — 342 с.

8.                  Справочник по плавкости систем из безводных неорганических солей. Том 1, Двойные системы. Под ред. Н. К. Воскресенской. — АН СССР. М.: Химия, 1961. — 132 с.

Обсуждение

Социальные комментарии Cackle