Библиографическое описание:

Паульс В. Ю., Смолин Н. И., Ставицкий А. В., Скок М. А. Современная технология нанесения антифрикционных покрытий // Молодой ученый. — 2015. — №6.5. — С. 15-17.

Рассмотрен способ получения антифрикционных покрытий и упрочнения деталей цилиндропоршневой группы двигателей внутреннего сгорания. В результате предлагаемой технологии повышается работоспособность деталей, сокращается период приработки и уменьшается износ покрытия в условиях ограниченной смазки.

Ключевые слова:сталь, антифрикционное покрытие, упрочнение, диффузия, легирующие элементы, электрический ток, микроструктура, износ.

В настоящее время известны различные способы нанесения многослойных антифрикционных покрытий на основе железа. Их недостатком является длительность периода приработки, сложность (в том числе подготовительные операции перед нанесением слоев) и нестабильность технологии, необходимость контроля пористости отдельных слоев, что можно сделать лишь разрушающим методом, а также потребность в завершающей механической обработке (шлифовании) после нанесения покрытий.

Для сокращения длительности периода приработки и снижения износа покрытия в период эксплуатации нами разработан способ нанесения антифрикционных покрытий [1], включающий упрочнение поверхностного слоя детали и нанесения поверх него приработочного слоя по следующей технологии: 1) нагрев детали в защитном солевом электролите, анодная поляризация ее током 0,1-25,0 А/дм в течение 1,5-2,0 ч при температуре закалки, выбираемой в соответствии с известными режимами термообработки по справочникам; 2) закалка детали в воде или масле в соответствии с принятыми режимами; 3) кипячение детали в воде в течение 20-60 мин с целью удаления пленки солевого электролита; 4) нанесение приработочного слоя электролитическим способом в этилендиаминовом электролите путем катодной поляризации детали плотностью тока 0,95-1,1 А/дм2 при температуре 22-40 0С с медьсодержащим вспомогательным электродом до получения слоя меди толщиной 30-60 мкм.

В процессе анодной поляризации детали в солевом расплаве при температуре закалки легирующие компоненты и углерод, входящие в состав стали, диффундируют в поверхностный слой, что после закалки по известным режимам приводит к повышению микротвердости поверхности детали, и увеличению ее износостойкости [2]; прирабатываемость детали улучшается за счет нанесения на ее поверхность сервовитной медной пленки толщиной 30-60 мкм, обладающей термодинамически неустойчивой структурой, склонной к модификации в период приработки. Перед катодной поляризацией упрочненной детали необходимо удалить остатки солевого электролита кипячением в воде в течение 20-60 минут в зависимости от формы и шероховатости детали.

Остатки солевого электролита с гладких деталей простой формы, подобных поршневым кольцам, удаляются при кипячении 20 мин в воде. При меньшей продолжительности на поверхности изделий могут сохраниться "размягченные" остатки электролита. В случае более сложной формы поверхности (например, при наличии канавок или ступенчатых переходов от одного диаметра к другому) и большей шероховатости продолжительность кипячения приходится увеличивать до 60 мин, чтобы полностью растворить оставшийся электролит.

Нанесение медного приработочного слоя на поверхность изделия, работающего в условиях трения со смазкой известно. В предлагаемой технологии выбраны особые условия электролиза меди, позволяющие получить в процессе электрокристаллизации термодинамически неустойчивую структуру, склонную к интенсивной модификации в период приработки. Выступающие микронеровности нанесенного покрытия в начальные моменты эксплуатации легко деформируются, площадь опорных поверхностей трения увеличивается и силовое воздействие в местах контакта уменьшается, а качество прирабатываемых поверхностей улучшается. При "тяжелых" режимах трения медная пленка может служить твердым смазочным материалом благодаря своей особой структуре, сформированной в процессе электрокристаллизации с плотностью тока 0,95-1,1 А/дм2 и температуре 22-40 0С в известном этилендиаминовом электролите.

Температура 22-40 0С является оптимальной для электролиза меди в этилендиаминовом электролите: понижение температуры менее 22 0С требует дополнительных затрат и усложняет технологию, повышение температуры более 40 0С ухудшает качество медного покрытия.

Электрокристаллизация покрытий на плотностях тока менее 0,95 А/дм2 приводит к получению медного слоя со столбчатой структурой, которая практически не претерпевает желаемых изменений при "мягких" режимах трения. С другой стороны, использование плотности катодного тока больше 1,1 А/дм2 приводит к получению порошкообразных покрытий, ограниченно пригодных к использованию в качестве компактных слоев.

Толщина приработочного слоя менее 30 мкм не обеспечивает исправления геометрических погрешностей внутренней поверхности гильзы цилиндра, что приводит к потере работоспособности двигателя в целом. Увеличение толщины медного слоя выше 60 мкм вызывает необоснованные материальные и временные затраты, не улучшающие работоспособность двигателя.

Разработанный способ нанесения антифрикционных покрытий характеризуют следующие примеры с образцами материалов, применяемых для изготовления поршневых колец (табл. 1). К образцам размером 40´10´10 мм крепили токоподводы из стали 20. При анодной поляризации в качестве вспомогательного электрода использовали прутки стали 20, нагрев осуществляли в печи сопротивления мощностью 10 кВт и рабочим объемом 3 дм3.

Пример 1. После нагрева тигля с расплавом буры, содержащей 0,5 мас. % оксида железа (II), до 880 0С в расплав погружали образец стали 20Х и вспомогательный электрод. Образец подключали к положительному полюсу источника постоянного тока, а вспомогательный электрод – к отрицательному. В течение 2 часов пропускали ток плотностью 14,3 А/дм2, после чего образец закаливали в масле. Затем 20 мин кипятили в воде, перемещали его в этилендиаминовый электролит и катодно поляризовали током плотностью 1,1 А/дм2 при температуре 40 0С, используя в качестве анода чистую медь. Состав электролита: CuSO4·5H2O – 110-125 г/л, этилендиамин (70 % – й) – 60-70 г/л, Na2SO4·10H2O – 50-60 г/л, (NH4)2SO4 – 50-60 г/л, pH = 6,8-8,4.

Пример 2. Способ осуществляли аналогично примеру 1, однако использовали образец из стали 50ХФА, а анодную поляризацию проводили 1,5 ч при 850 0С током плотностью 25,0 А/дм2. Кипячение упрочненного образца проводили 30 мин. Катодную поляризацию выполнили током плотностью 0,95 А/дм2 при 22 0С, используя бронзовый пруток БрОФ6,5-0,4 в качестве анода.

Пример 3. Способ осуществляли аналогично примеру 1, однако использовали образец из чугуна ВЧХНМД, анодную поляризацию проводили 1,9 ч при 870 0С током плотностью 0,1 А/дм2. Кипячение упрочненного образца проводили 60 мин. Катодную поляризацию выполнили током плотностью 1,05 А/дм2 при 29 0С.

Пример 4. Способ осуществляли аналогично примеру 1, однако анодную поляризацию проводили 2,5 ч током плотностью 0,05 А/дм2. Кипячение упрочненного образца проводили 70 мин. Катодную поляризацию выполнили током плотностью 0,75 А/дм2 при 20 0С.

Пример 5. Способ осуществляли аналогично примеру 1, однако анодную поляризацию проводили 1,0 ч при 830 0С током плотностью 27,2 А/дм2. Кипячение упрочненного образца проводили 10 мин. Катодную поляризацию выполнили током плотностью 1,25 А/дм2 при 52 0С. На поверхности образца наблюдали остатки солевого электролита.

Пример 6. Для сравнения упрочнили образец стали 20Х без нанесения приработочного слоя. Анодную поляризацию и закалку проводили аналогично примеру 1.

Таблица 1

Режимы и результаты нанесения антифрикционных покрытий

Параметры катодной
поляризации

Толщина приработочного слоя, мкм

Период приработки, ч

Износ, мг/ч

плотность тока, А/дм2

температура, 0С

1

1,1

40

60

2,4

38,1

2

0,95

22

30

2,1

32,3

3

1,05

29

40

2,2

30,6

4

0,75

20

20

2,5

59,8

5

1,25

52

70

2,8

58,3

6

-

-

0

3,6

49,5

Износ образцов определили на машине трения СМТ-2 по схеме "диск-пластина" без смазки по убыли массы. Период приработки оценивали по времени стабилизации износа. Приведенные в таблице результаты показывают преимущества разработанной технологии по сравнению с известными. Осуществление способа нанесения антифрикционных покрытий с параметрами, выходящими за рамки указанных, не обеспечивает положительного эффекта: хотя период приработки сокращается, а интенсивность износа заметно возрастает.

Таким образом, разработанный способ может быть использован для получения антифрикционных покрытий и упрочнения деталей цилиндропоршневой группы двигателей внутреннего сгорания, например поршневых колец, а также для нанесения покрытий на изделия, работающие в условиях трения.

 

Литература:

1.      Патент № 2241783 Российская Федерация, МПК С 23 С 26/00. Способ нанесения антифрикционных покрытий / Кусков В.Н., Паульс В.Ю., Смолин Н.И., Ковенский И.М. (РФ); заявл. 09.09.2003, опубл. 10.12.2004, Бюл. № 34.

2.      Кусков В.Н., Паульс В.Ю., Смолин Н.И. Ремонт технологического оборудования перерабатывающих производств. – Тюмень: Вектор Бук, 2013. – 160 с.

Основные термины: током плотностью, нанесения антифрикционных покрытий, 0С током плотностью, приработочного слоя, анодную поляризацию, аналогично примеру, Кипячение упрочненного образца, Катодную поляризацию, солевого электролита, период приработки, способ нанесения антифрикционных, остатки солевого электролита, плотностью тока, получения антифрикционных покрытий, нанесения покрытий, поляризации детали плотностью, медного слоя, упрочнения деталей цилиндропоршневой, нанесения приработочного слоя, этилендиаминовом электролите

Обсуждение

Социальные комментарии Cackle