Библиографическое описание:

Гудкова В. С., Ячинова С. Н. Пути повышения качества обучения математике студентов технических вузов // Молодой ученый. — 2015. — №3. — С. 755-758.

Известно, что одним из способов повышения качества обучения математике является применение в образовательном процессе методов, способствующих развитию и становлению познавательной активности и самостоятельности обучаемых. Одним из таких методов является метод наглядности.

В педагогической и методической литературе уделяется большое внимание принципу наглядности в обучении. Роль наглядности и её значение рассматривается в работах Я. А. Коменского, А. Н. Леонтьева, Г.Пестоллоци, К. Д. Ушинского, Л. М. Фридмана и др. В них особо отмечается важность применения наглядности в обучении математике, в связи с тем, что математика способствует развитию логического мышления, пространственного воображения.

В обучении математике широко применяется символическая наглядность, основу которой составляют чертежи, графики, схемы, таблицы. Наглядные пособия в процессе обучения математике используют для ознакомления с новым материалом, для формирования знаний, умений, навыков, для проверки уровня их усвоения.

При изучении дифференциальных уравнений в курсе математического анализа у студентов возникают большие трудности с их решением, особенно когда в задании не указано какое уравнение требуется решить. Студент должен сам определить вид уравнения и вспомнить метод его решения. Для овладения методами решения дифференциальных уравнений первого порядка составляется вспомогательная таблица (таблица 1), которая является опорным конспектом по данной теме.

Таблица 1

Дифференциальные уравнения первого порядка

Название уравнения

Вид уравнения

Метод интегрирования

1. С разделенными переменными

2. С разделяющимися переменными

3. Приводящиеся к уравнению с разделяющимися переменными

а) ;

а) подстановка

б) , если

б) подстановка

4. Линейные относительно

а) метод Лагранжа

б) метод Бернулли:

5. Уравнение Бернулли

Метод Бернулли:

6. Однородные

а) ;

б)

 

Подстановка

7. Приводящиеся к однородному

, если

8. В полных дифференциалах

,

9. Приводящиеся к уравнению в полных дифференциалах

, если

, но

а)

б)

а)

б)

(см.8)

 

Также большие трудности у студентов вызывает решение линейных неоднородных дифференциальных уравнений с постоянными коэффициентами. Для помощи студентам в освоении методики их решения составляется таблица соответствия вида частного решения виду правой части (таблица 2).

Таблица 2

Соответствие вида частного решение виду правой части ЛНДУ

Вид правой части

Вид частного решения

1.,  — многочлен степени n от х.

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а) ,

-многочлен той же степени, что и .

б) ,

-многочлен той же степени, что и .

2. ,  — многочлен степени n от х.

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а) ,

-многочлен той же степени, что и .

б) ,

-многочлен той же степени, что и .

3. , С,D — постоянные числа

а) - не корень характеристического уравнения

 

б) - корень характеристического уравнения кратности s.

а),

А и В — постоянные неопределенные коэффициенты

б)  А и В — постоянные неопределенные коэффициенты

4. , - многочлен степени m,

 — многочлен степени n

а) - не корень характеристического уравнения

 

 

б) - корень характеристического уравнения кратности s.

а)

-многочлены степени r, r=max(m,n)

б)

-многочлены степени r, r=max(m,n)

 

Приведенные выше таблицы можно применять на различных этапах обучения решению дифференциальных уравнений, особенно они помогают студентам в самостоятельной работе.

Применение наглядности при обучении математике активизирует мыслительную деятельность, повышая уровень усвоения основных математических понятий и качество математической подготовки студентов, являющейся основой их профессиональной подготовки.

 

Литература:

 

1.                  Гудкова В. С., Ячинова С.Н, Новичкова Т. Ю. Наглядность как средство повышения качества обучения математике // Вестник магистратуры. — 2014. — № 12–4 (39). — С.41–43.

2.                  Крымская Ю. А., Титова Е. И., Ячинова С. Н. Построение математических моделей в прикладных задачах // Молодой ученый. — 2013. — № 12 (59). — С. 3–6.

3.                  Куимова Е. И., Куимова К. А., Ячинова С. Н. Формирование мотивационной составляющей обучения на примере изучения дифференциальных уравнений // Молодой ученый. — 2014. — № 2(61) — с.775–777.

4.                  Новичкова Т. Ю., Крымская Ю. А., Ячинова С. Н. Прикладная направленность преподавания математики как средство повышения качества обучения в военных вузах // Молодой ученый. — 2014. — № 18. — С. 619–621.

5.                  Ячинова С. Н., Гудкова В. С. Мотивация обучения студентов посредством моделирования // Молодой ученый. — 2014. — № 4 — с.1141–1144.

Обсуждение

Социальные комментарии Cackle