Библиографическое описание:

Первушкина Е. А., Калинина А. И. Решение геометрических задач методом «Золотого сечения» // Молодой ученый. — 2014. — №21.1. — С. 207-210.

Данная статья посвящена обзору различных способов решения геометрических задач с помощью метода «золотого сечения». Рассмотрен математический термин «золотое сечение», его основные свойства.

Ключевые слова: геометрическая задача, пропорции, иррациональное число, геометрическое построение, наглядность, интерактивные геометрические среды.

Abstract. This article reviews the different ways of solving geometric problems using the method of the Golden section. Considered a mathematical term «Golden section», its basic properties.

Keywords: geometric problem, proportions, irrational number, geometric construction, visualization, interactive geometric environment.

 

«Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора, а другое – деление отрезка в среднем и крайнем отношении… Первое можно сравнить с мерой золота; второе же больше напоминает драгоценный камень».

Иоганн Кеплер

В повседневной жизни мы часто сталкиваемся с математическим термином «золотое сечение» сами того не подозревая. В живой природе«золотое сечение» встречается в некоторых видах морских звезд,раковинах моллюсков, рогах млекопитающих; в химиисечение встречается в белковых цепях нуклеиновых кислот; в медицине этот термин связывают с работой сердца и его мышечной системой; в архитектуре сечение представлено в различных проектах домов, в здании Кремля;в математике и геометрии «золотое сечение» образует геометрическую фигуру – икосаэдр, грани которого представлены 20 равносторонними треугольниками;также данный метод применятся для решения геометрических задач [3, с. 59]. Рассмотрим его более подробно.

В математике пропорцией (лат. proportio) называют равенство двух отношений:

a : b = c : d.

Отрезок прямой ВС можно разделить тремя  способами:

·                    на две равные части, тогда отношение пропорции примет следующий вид:  ВС:ВD=ВС:CD;

·                    на две неравные части в любом отношении, такие части не образуютпропорции;

·                    таким образом, когда ВС:BD=BD:CD.

Последнее разделение отрезка на части называется золотым делением или деление отрезка в крайнем и среднем отношении[1, с. 349].

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; и меньший отрезок так относится к большему, как больший ко всему[4, с. 50].

a : b = b : c или с : b = b : а.

Рассмотрим геометрическое смысл золотого сечения и выведем его приближенное значение.С математической точки зрения золотое сечение выразится через формулы квадратичной иррациональности.

a

 

ba-b

Рис. 1. Геометрическое изображение «золотого сечения»

– показывает отношение большей части к меньшей.

– показывает отношение меньшей части к большей.

Итак, «золотое сечение» - это иррациональное число, приблизительно равное 1,618. Число –является золотым сечением[1, с. 345].

Впервые данный термин встречается в «Началах» Евклида (ок. 300 лет до н. э.).

Понятие «золотое сечение» или «золотое деление» в научный обиход ввел Пифагор, древнегреческий философ и математик.Рассмотрим некоторые виды задач, в решении которых используется принцип золотого сечения:

Задача№1. Возьмите отрезок длиной 10 см и разделите его приблизительно в золотом отношении.

Получим два отрезка длиной 6,2 см и 3,8 см. Одна часть больше другой в 1,6 раза.

 

6,2 см                                 3,8 см

 

10 см

Рис. 2. Разбиение отрезка в золотом отношении

Части золотого деления составляют приблизительно 62% и 38% всего отрезка.

Задача №2. Построить золотой прямоугольник.

Рассмотрим алгоритм построения золотого прямоугольника:

1.                  Начертим квадрат и разделим его на два равных прямоугольника.

2.                  В одном из прямоугольников проведем диагональ ВС.

3.                  Циркулем проведем окружность радиуса ВС с центром в точке В.

4.                  Продолжим основание квадрата до пересечения с дугой в точке L и проведем сторону KL параллельную стороне данного прямоугольника.

 

ССN        С         К

1.                                2.                            3.4.

 

 

 

                                              В                              ВВ          М      L

Рис. 3. Алгоритм построения золотого прямоугольника

 

ВС-радиус окружности; В-центр окружности

Измерьте линейкой длины сторон построенного прямоугольника MСKL и вычислите отношения большей стороны к меньшей.Отношение сторон .

Так как число– иррациональное, то с помощью простых измеренийсделать это невозможно. Еще в древности мастера использовали циркуль и линейку, причем они рассмотрели различные способы построения. Разберем один из способов деления отрезка в золотом сечении.

Решение:

Пусть дан отрезок ВС, применим к нему метод  «золотое сечение».

Опустим перпендикуляр СА к отрезку ВС. Предположим, что длина отрезка ВС = 1.

Пусть длина отрезкаСА = 2ВС. СА=.

Из точкиА проведем окружность радиусом АК, где АК=ВС.

Тогда длина отрезка .

Затем  проведем окружность с центром в точкеВ радиусом ВЕ. Длина отрезка   .

 

 

A

 

 

 

 


К

 

                                                  Е

 

 

BNC

Рис.4. Золотое сечение отрезка ВС в точке N

Окружность с радиусом ВЕ пересечет отрезок ВС в точке N золотого сечения, так как .

Задача№3.Вырежите из бумаги прямоугольник со сторонами 10 см и 16 см. Отрежьте от него квадрат наибольшей площади. Измерьте стороны получившегося прямоугольника.

Решение:

А К                          В

Надпись: P N

Д                                       М                        С

Рис. 5. Построение золотого прямоугольника

 

Рассмотрим прямоугольник АВСД: Пусть стороны АВ=16 см, ВС=10 см. Тогда отношение сторон примет следующий вид: АВ:ВС=16:10=1,6.

Рассмотрим  прямоугольник КВСМ: так как ВС=КМ=10 см, а КВ=АВ-АК=16-10=6 см. Получим следующееотношение сторон КМ:КВ=10:6=1,6666…см.

Рассмотрим прямоугольник МPNC: так как СN=ВС-ВN=10-6=4 см, а МС=ДС-ДМ=16-10=6 см, то  отношение сторон МС:СN примет следующий вид МС:СN=6:4=1,5 см. Получили золотой прямоугольник

Задача№4. Построить золотое сечение отрезка ВС.

Решение:Построить золотое сечение отрезка ВС, значит найти точкуК такую, что  .                                                                                                 D

                                                                                                                    

 

                                                                   Е

N

 

                     В                              К                                                           С

 

Рис. 6. Золотое сечение отрезка ВС

 

Рассмотрим прямоугольный треугольник DBC, у которого один катет в 2 раза больше другого. Проведем  из точкиС перпендикуляр к прямой ВС и на нем отложим отрезок СD, длина которого равна половине стороны ВС.

СD=BC.

Затем, соединим точкиВ и D. Отложим отрезкиDE и ВКтак, что длина отрезка DE равна длине отрезка DC, а отрезокBK=АN.

Точка K является искомой, она производит золотое деление отрезка BC.

Нами было рассмотрено решение геометрических задач с помощью метода «золотого сечения». Использование предложенных видов заданий позволяет развивать творческие способности, исследовательские навыки и активизировать познавательную деятельность школьников, существенным образом интенсифицировать процесс обучения математике[2, с. 52].

 

 

 

 

 

 

 

 

Литература:

1.                  Золотое сечение. Три взгляда на природу гармонии / Шевелев И.Ш., Марутаев М.А., Шмелев И.П. – М.: Стройиздат, 1990. – С. 343-350.

2.                  Напалков С.В., Первушкина Е.А. WEB-КВЕСТ как средство развития инновационной стратегии образования // Приволжский научный вестник. – 2014. – № 8-2 (36).– С. 51-53.

3.                  Первушкина Е.А. Модель развития геометрической креативности школьников при обучении математике в 5-6 классах с использованием информационных технологий // Школа будущего. – 2011. – № 6. – с. 58-64.

4.                  Шевелев И.Ш. Геометрическая гармония // Наука и жизнь. – 1965. – № 8.– С. 14-26.

Обсуждение

Социальные комментарии Cackle