Библиографическое описание:

Инютин С. А., Елькин А. В., Прохоров А. А. Модель поперечных перемещений заглубленного трубопровода при воздействии ударной нагрузки // Молодой ученый. — 2014. — №15. — С. 83-89.

В статье анализируется изгиб линейной части трубопровода, возникающий при ударных нагрузках. Предложена модель поперечных перемещений заглубленного трубопровода, которая позволяет оценить параметры импульсной ударной нагрузки.

Ключевые слова: воздействие взрывной нагрузки, нагрузки на трубопровод, поперечные перемещения трубопровода.

При воздействии ударной импульсной нагрузки на заглубленные сооружения (трубопровода) обычно выделяют три типа деформации:

изгиб линейной части;

продольное растяжение;

смятие цилиндрических диаметров линейной части.

В статье анализируется первый тип деформаций, возникающий чаще всего даже при сравнительно малых ударных нагрузках, если эпицентр её приложения попадает в критическую зону. Этот тип деформаций приводит при превышении допустимых нагрузок и достижению пределов текучести материала трубопровода к трещинообразованию в линейной части трубопровода и, как следствие, катастрофическим последствиям.

Рассматривая воздействие ударной волны в среде с преградой, на основе решения волнового уравнения в лагранжевых координатах, при известных начальных условиях получена приближенная формула, определяющая распределение давления по времени и длине заглубленного трубопровода:

,                                                                                  (1)

при начальных условиях:

u(x,0) = 0,

где - давление падающей волны на трубопроводе;  — смещение (прогиб) трубопровода на расстоянии x от начала координат в момент времени t (при этом начало координат находится в точке пересечения оси трубопровода с перпендикуляром, опущенным из эпицентра ударной нагрузки на ось трубопровода); А — акустическое сопротивление грунта.

При создании моделипоперечных перемещений под воздействием ударной импульсной нагрузки предположим, что заглубленный трубопровод лежит на Винклеровом основании [1]. Дифференциальное уравнение в частных производных, описывающее вынужденные поперечные колебания (перемещения) трубопровода в грунте, с учетом соотношения (1) имеет вид:

,     (2)

где - прогиб трубопровода на расстоянии от начала координат в момент времени t; I — осевой момент инерции сечения стержня (трубопровода); E — модуль упругости материала трубопровода; m1 — масса единицы длины трубопровода; - коэффициент постели; Dн — наружный диаметр трубопровода; Py — нагрузка, действующая по нормали к оси трубопровода.

Известно, что плоскостная задача решается проще, чем пространственная, учитывая, что трубопровод заглублен в грунт на 1...2 метра, рассмотрим задачу вычисления прогиба его линейной части на плоскости. Начало координат выберем в точке пересечения оси трубопровода и перпендикуляра, опущенного из эпицентра приложения ударной импульсной нагрузки на трубопровод, и вследствие симметрии будем рассматривать только его половину.

Зная, что на бесконечности функция u(x,t) иее производные до третьего порядка включительно должны обращаться в нуль, запишем граничные условия

, при .                                                                                           (3)

В начальный момент времени t=0 трубопровод находится в состоянии покоя, поэтому начальные условия примут вид:

                                                                                                (4)

Для решения уравнения (2) с граничными (3) и начальными (4) условиями воспользуемся интегральным косинус-преобразованием Фурье, для чего слагаемые уравнения умножим на и проинтегрируем от нуля до бесконечности (здесь ξ — частотный коэффициент при переменной х):

Для удобства последующих вычислений введем обозначения

;   

Обозначая , введем новую функцию от двух переменных — частотного коэффициента ξ и времени t. Интегрируем первое слагаемое  последовательно по частям с учётом граничных условий (3). Получим для функции  обыкновенное дифференциальное уравнение

,                                                                                      (5)

где

                                                                           (6)

с начальными условиями

                                                                                             (7)

Решение уравнения (5) содержит частное решение неоднородного дифференциального уравнения с постоянными коэффициентами и общее решение однородного линейного дифференциального уравнения:

где (t)- некоторое частное решение,  — общее решение соответствующего однородного уравнения.

Общее решение однородного уравнения

                                                                                                      (8)

будем искать в виде  (здесь P — некоторая постоянная, которую необходимо найти).

Вычислим . После подстановки в (8) и сокращения на неравное нулю , для определения P получим квадратное характеристическое уравнение:

.

Корни квадратного уравнения в зависимости от знака дискриминанта D уравнения являются вещественными или комплексными. Обозначим . Если трение в грунте при смещении трубопровода большое, что определяется неравенством , то характеристическое уравнение имеет вещественные корни .

Общее решение уравнения (8) имеет вид:

,

где  и  некоторые постоянные, которые определяются исходя из начальных условий (7), следовательно:

Если трение в грунте при смещении трубопровода незначительно, что определяется неравенством , характеристическое уравнение имеет мнимые сопряжённые корни  где i — мнимая единица (i2 = -1). В этом случае общее решение дифференциального уравнения (8) имеет вид:

Из начальных условий найдем значения констант  и , получим:

Для нахождения частного решения уравнения (5) применим функцию Грина, для этого нужно при начальных условиях (3) решить уравнение:

                                                                                     (9)

Полагая, что и находится в следующих пределах , найдем решение однородного уравнения (8) при начальных условиях:

 (10)

 (11)

Проинтегрируем (9) по от  до , учитывая, что интегралы от конечных второго и третьего слагаемых в (9) равны нулю. Для общего решения уравнения (8) с использованием корней характеристического уравнения Р1 иР2 получим:

Это решение применимо для любых значений трения в грунте при смещении трубопровода.

Для последующих преобразований получим функцию Грина

.

Эта функция всюду непрерывна, кроме точки , в которой происходит скачкообразное изменение. В этом случае решение уравнения (9) примет вид

                                                                             (12)

Заметим, что для нагрузок, распределённых по времени и по длине трубопровода в общем случае решение задачи о вычислении его смещения является чрезвычайно сложным.

Экспериментальными исследованиями установлено, что для заглубленных в грунте магистральных трубопроводов имеет место только случай малого трения при смещении трубопровода, т. е. .

На основе полученного решения (12) дифференциальной модели (2), а также литературных данных [2] можно утверждать, что при кратковременной ударной импульсной нагрузке, характерной для взрывов, имеет значение только величина и продолжительность импульса, что позволяет пренебречь формой импульса:

.

Величина ударного импульса S, сообщаемого волной трубопроводу нами принята в качестве критерия разрушительной способности взрывной волны.

Проанализируем напряжения, возникающие от линейного смещения и изгибающих моментов в трубопроводе при действии сосредоточенного ударного импульса на рассматриваемой математической модели.

В начальный момент ударный импульс сообщает трубопроводу скорость u/0), но не вызывает его перемещения u(x,0). Следовательно

,

где S= P1t0 — величина импульса; to — продолжительность действия импульса; m1 — масса единицы длины трубопровода.

Для анализа воздействия на трубопровод сосредоточенного ударного импульса, применим функцию Дирака (x). Тогда для функции давления, действующего на трубопровод, учитывая (6) получим:

.

Общее решение дифференциального уравнения (5) запишется в виде

.                                                                                (13)

Обозначим . Интегрируя (13) от 0 до произвольного момента времени получаем:

при t ≤ t0

;                                                             (14)

при t > t0

.                                                                              (15)

По формуле обращения косинус-преобразования Фурье получим смещение трубопровода u(x,t) в грунте:

при t ≤ t0

                                                  (16)

при t > t0

.                                                 (17)

Вычисление в общем случае интегралов (16) и (17), описывающих прогиб трубопровода, представляет большие трудности. Поэтому рассмотрим решения для сосредоточенного импульса в сечении трубопроводов только в точке x=0 (в ней возникают наибольшие напряжения и деформации), что позволяет получить решение в виде удобных для практических применений формул, с использованием быстро сходящихся степенных рядов.

Для вычисления интегралов (16) и (17) выполним последовательные преобразования, включающие разложение подынтегральных функций в ряды по функциям Бесселя, разложение в ряды Тейлора и интегрирование полученных рядов. Окончательно получим формулу для определения смещения (прогиба) трубопровода в следующем виде:

.                                                                            (18)

где s(τ) — функция времени, параметров трубопровода и среды, предварительно вычисляемая по следующей формуле:

,

здесь , , ,  — введенные обозначения, Fi — произведения гамма- и гипер-геометрических функций с определенными параметрами, зависящими от индекса суммирования, жесткости трубопровода и акустического сопротивления грунта, r — расстояние от эпицентра приложения взрывного импульса,W — приведенная мощность взрывного импульса, - коэффициент, зависящий от свойства грунта.

При известных значениях нагрузки и коэффициентов, описывающих свойства грунтов формула (18) позволяет определить значение прогиба трубопровода  после воздействия ударной импульсной нагрузки в произвольный момент времени .

Для определения максимальных изгибающих моментов в точке х=0 при взрывном импульсе математические выкладки аналогичны ранее изложенным. Опустив их, приведем соответствующую формулу для вычисления изгибающего момента:

                            (19)

Ряды, необходимые для вычисления выражений (18) и (19) сходятся быстро и для практических расчётов достаточно взять нескольких первых членов ряда. Эти формулы предназначены для вычисления деформаций от воздействия сосредоточенного ударного импульса.

Полученные в результате математического моделирования выражения для вычисления значений прогиба (18) и изгибающих моментов (19) для линейной части заглубленного в грунт трубопровода целесообразно сравнить с результатами натурных экспериментов. Их сопоставление показывает, что расчётные значения прогиба и изгибающих моментов несколько меньше экспериментальных. Это объясняется тем, что значения экспериментальных данных учитывают влияния рассеяния энергии взрыва в материале трубы и инерции основания. Из литературных источников известно, что разница в определении изгибающих моментов с учётом затухания энергии взрыва получается одного порядка с точностью вычислений [4]. Это объясняется тем, что изгибающий момент достигает своего максимума немного раньше смещений, при этом рассеяние энергии взрыва в материале трубопровода практически не влияет на величину его максимального значения.

Для практической оценки реакции линейной части трубопровода на воздействие взрывной нагрузки в зависимости от времени целесообразно ввести динамические коэффициенты изгибающего момента и смещения трубопровода. На рисунке 1 приведены зависимости динамических коэффициентов изгибающего момента () и смещения трубопровода () от продолжительности действия взрывной нагрузки (здесь А — акустическое сопротивление грунта). Как видно, поведение временных функций динамических коэффициентов аналогично.

Рис. 1. Зависимости динамических коэффициентов от продолжительности действия взрывной нагрузки: а) для изгибающего момента; б) для смещения трубопровода.

Графики на рисунке 1 построены на основе данных проведенного эксперимента для нефтепродуктопровода диаметром 325 мм с толщиной стенки 9 мм, приведенной мощности взрывного импульса кг в тротиловом эквиваленте и расстояния от эпицентра взрыва до нефтепродуктопровода м. Для расчетов используются коэффициенты среды = 30 и = 3, зависящие от свойств грунтов, экспериментально определенные для широко распространенного глинистого песка в работе [3].

Из графика видно, что при мгновенном действии взрывного импульса трубопровод подвергается значительной нагрузке. С увеличением продолжительности действия взрывной нагрузки величина смещения из-за деформации трубопровода растёт и достигает своего максимума, который имеет значение 1,2…1,4, а для изгибающего момента — 1,6…1,8. Затем величины динамических коэффициентов сглаживаются (затухают) и уже при с быстро приближаются к единице.

На рисунках 2 и 3 приведены графики распределения смещения и изгибающего момента по длине трубопровода для различных временных интервалов.

Рис. 2. График распределения динамического коэффициента прогиба (смещения) по длине трубопровода при продолжительности действия ударной нагрузки t0 = 3.10–3c

Рис. 3. График распределения динамического коэффициента изгибающего момента по длине трубопровода при различной продолжительности действия нагрузки.

Из графиков на рисунках 2 и 3 видно, что характер распределения изгибающего момента по длине нефтепродуктопровода практически не зависит от продолжительности действия нагрузки, при изменении длительности лишь меняются амплитуды прогибов линейной части и изгибающих моментов нефтепродуктопровода.

Предлагаемая модель поперечных перемещений заглубленного трубопровода является адекватной, результаты расчетов в достаточной степени согласуется с экспериментальными данными. Модель позволяет оценить критические ситуации и параметры импульсной ударной нагрузки, приводящие к значениям смещения (прогиба) линейной части, изгибающих моментов трубопровода и деформациям, при которых достигаются пределы текучести, возникает усталость материала оболочки и трещинообразование в линейной части трубопровода под воздействием импульсных ударных нагрузок.

Литература:

1.                 Ляхов Г. М. Основы динамики взрывов в грунтах и жидких средах. — М.:Недра, 1964

2.                 Садовский М. А. Механическое действие воздушных ударных волн по данным экспериментальных исследований// Сб.Физика взрыва. — М.: Изд-во АН СССР, 1952.

3.                 Мавлютов Р. М. Исследование поражаемости и напряженного состояния магистральных нефтепродуктопроводов при проведении взрывов: дисс. … канд.техн.наук. — Уфа: УГНТУ, 1971.

4.                 Взрывные явления. Оценка и последствия: в 2 кн./У.Бейкер, П.Кокс, П.Уэстайн [и др.]; пер. с англ. — М.: Мир, 1986.

Обсуждение

Социальные комментарии Cackle