Библиографическое описание:

Проценко Е. А., Семенова Г. А., Григорян Л. А., Тимофеева Е. Ф. Исследование погрешности аппроксимации двумерной математической модели транспорта наносов // Молодой ученый. — 2014. — №11. — С. 11-18.

В статье рассмотрена нестационарная пространственно-двумерная модель транспорта наносов в прибрежной зоне водоемов, учитывающая следующие физические параметры и процессы: пористость грунта, критическое значение касательного напряжения, при котором начинается перемещение наносов, турбулентный обмен, динамически изменяемую геометрию дна и функцию возвышения уровня, ветровые течения, трение о дно. Выполнена дискретизация предложенной модели транспорта наносов. Показано, что построенные разностные схемы обладают первым порядком погрешности аппроксимации относительно шага по временной переменной и вторым — относительно шагов по пространственным переменным.

Ключевые слова: транспорт наносов, разностные схемы, аппроксимация, погрешность.

Введение. При конструктивном преобразовании рельефов следует учитывать динамику процессов образования берега, исследовать формирование профиля дна в прибрежных акваториях под воздействием волновых процессов. Процесс перемещения наносов волнового поля вдоль берега относят к одному из важнейших явлений прибрежной зоны водоема [1, 2].

Для достоверного прогноза динамических явлений береговой зоны возникает необходимость в построении математических моделей процессов переноса вещества на мелководье под воздействием поверхностных гравитационных волн, играющих важную роль в прогнозировании возможного вмешательства в экосистему, в анализе текущей ситуации, в принятии оперативных решений по преодолению антропогенных воздействий [2, 4].

Одним из наиболее эффективных методов исследования реальных процессов гидродинамики в настоящее время является численное моделирование. Для задач математического моделирования гидродинамических процессов в водоемах актуальной остается проблема построения и практического использования вычислительно-эффективных методов, применение которых позволяло бы получать достаточно точное приближенное численное решение. Математическое моделирование природных систем, в том числе мелководных водоемов, дополняет, а во многих случаях позволяет исключить дорогостоящие натурные эксперименты с реальной экосистемой [4, 5, 6].

Непрерывная модель. Уравнения процесса перемещения наносов запишем в дивергентном виде [7, 8]:

.                           (1)

где      Н — глубина дна, отсчитываемая от невозмущенной поверхности водоема;  ‒ пористость грунта; x, y — горизонтальные декартовы координаты;  ‒ касательное напряжение на дне;  ‒ критическое значение касательного напряжения, при котором начинается перемещение наносов; А и  — безразмерные постоянные (в настоящей работе А равна 19,5,  равна 3),  ‒ частота волны; d ‒ характеристика осадков;  — плотности твердых частиц и воды;  — угол естественного откоса грунта в воде;  — ускорение свободного падения;  — время.

Введем обозначение:

С учетом ограничений на касательные напряжения на дне расчетной области данное выражение запишем в виде [5, 9]: ,       (2)

где       — функция Хэвисайда.

Записав уравнение (1) с учетом (2), имеем:

                                                    (3)

Уравнение (3) дополним начальным условием:         (4)

На границе отсутствует поток, вызванный влиянием гравитационных сил:           

                                                                                                           (5)

Таким образом, имеем непрерывную двумерную математическую модель формирования наносов в прибрежной зоне водоема (1)-(5).         

Дискретизация двумерной математической модели транспорта наносов. Следующим этапом разработки двумерной математической модели процессов перемещения наносов в прибрежной зоне является построение дискретной модели по непрерывному аналогу. Построим разностную схему, аппроксимирующую уравнение (3) с соответствующими граничными и начальными условиями (4)-(5).

Расчетная область вписана в прямоугольник. Покроем область равномерной прямоугольной расчетной сеткой  [10, 11]:

,

,

где  — индексы по временной координате и пространственным координатным направлениям , соответственно;  — шаги по временной координате и пространственным координатным направлениям  соответственно;  — количество узлов по временной координате и пространственным координатным направлениям , соответственно;  — длина расчетной области по временной координате и пространственным координатным направлениям , соответственно.

Для получения дискретной модели воспользуемся интегро-интерполяционным методом [11, 12]. Для этого запишем уравнение (3) в следующем виде:

,                          (6)

где     

Интегрируя уравнение (6) по области :

 имеем:

.                                      (7)

Вычислим каждый из полученных интегралов в отдельности.

Найдем значение первого интеграла, стоящего в левой части уравнения (7):

, где                                                                                                               .                                                                                                                                                  (8)

Найдем значение второго интеграла, стоящего в левой части уравнения (7):

.                                                                 (9)

Аналогичным образом можно записать значение третьего интеграла, стоящего в левой части уравнения (7):

.                        (10)

Найдем значение первого интеграла, стоящего в правой части уравнения (7):

.                                                (11)

Обозначим  Проинтегрируем выражение на отрезке , имеем: .                                                                                                  (12)

Левую часть равенства (10) запишем в виде: .

Преобразуем правую часть выражения (12):

.

Таким образом, выражение (12) можно записать в виде:

.                                                                                   (13)

Подставим (13) в (12), в результате получим:

,                                               (14)

где  — вес схемы [13].

Аналогично получим значение второго интеграла, стоящего в правой части уравнения (7):

.                                   (15)

Подставив выражения (8)-(10), (14)-(15) в уравнение (7), имеем:       

.                               (16)

Разделив выражение (16) на , получим дискретную модель транспорта наносов:

,                                              (17)

где , ,

Найдем значение . Обозначим  Проинтегрируем данное выражение по области : , в результате получим:                                                                                                                                          .                                                                                                                                                  (18)

Левую часть данного выражения запишем в виде: .

Правую часть выражения (18) запишем в виде:

Таким образом, выражение (18) можно записать в следующем виде:

,                                        (19)

где  — единичные вектора, направленные вдоль координатных осей  соответственно.

Аналогичным образом можно получить следующую аппроксимацию:

.                                   (20)

Таким образом, уравнение (17) с аппроксимациями (18)-(19) задают дискретную модель транспорта наносов.

Погрешность аппроксимации конечно-разностной схемы. Найдем погрешность аппроксимации дискретной модели транспорта наносов. Запишем следующие разложения в ряд Тейлора относительно точки  с координатами  [10, 12].

,                                               (21)

.                                                (22)

При помощи разложений (21)-(22) можно вычислить порядок погрешности аппроксимации первого слагаемого в дискретной математической модели транспорта наносов (17).

.                                                      (23)

Для расчета погрешностей оставшихся слагаемых модели трансорта наносов (17) понадобятся разложения в ряд Тейлора относительно точки

,        

.        

Найдем погрешность аппроксимации для следующего выражения:

.

Принимая во внимание следующие равенства:

,

, получим:

.

Таким образом,

                                                                     (24)

Найдем погрешность аппроксимации для следующего оператора:

Принимая во внимание следующие равенства:

 получим:

                                                                     (25)

Таким образом, погрешность аппроксимации данного оператора

Нетрудно убедиться, что выражения (24) и (25) обладают вторым порядком погрешности аппроксимации по пространственной координате.

В результате получим следующее выражение:

Принимая во внимание следующие равенства:

, ,

, получим первый порядок погрешности аппроксимации по временной переменной.

Повышение порядка погрешности дискретизации до второго по времени приводит к необходимости решения систем нелинейных уравнений, что негативно сказывается на скорости вычисления. Следует также отметить, что кроме выражений ,  все остальные операторы аппроксимированы со вторым порядком погрешности аппроксимации при условии .

Вычислим погрешность аппроксимации коэффициентов .

Для этого найдем погрешность дискретизации поля градиента глубины в точках  и . Погрешность дискретизации поля градиента глубины в точке : .

Принимая во внимание следующие равенства:

,

получим погрешность аппроксимации поля градиента глубины:

.

Аналогичным образом можно получить аппроксимацию поля градиента глубины в точке : .

Из выражения , при  следует равенство порядков погрешности аппроксимации полей  и коэффициентов .

В итоге получаем второй порядок погрешности аппроксимации по пространственным координатам для поля коэффициентов .

Таким образом, общий порядок погрешности аппроксимации математической модели транспорта наносов равен .

Литература:

1.      Леонтьев И. О. Прибрежная динамика: волны, течения, потоки наносов. М.: Геос., 2001. 272с.

2.      Сухинов А. И. Прецизионные модели гидродинамики и опыт применения в предсказании и реконструкции чрезвычайных ситуаций в Азовском море//Известия ТРТУ. — 2006. № 3 (58). С. 228–235.

3.      Якушев Е. В., Сухинов А. И. Комплексные океанологические исследования Азовского моря в 28-м рейсе научно-исследовательского судна «Акванавт» // Океанология, 2003, т. 43, № 1, с.44–53.

4.      Сухинов А. И., Чистяков А. Е., Проценко Е. А. Математическое моделирование транспорта наносов в прибрежной зоне мелководных водоемов// Матем. моделирование. 2013. Т. 25.№ 12. С.65–82.

5.      Сухинов А. И., Никитина А. В., Чистяков А. Е., Семенов И. С. Математическое моделирование условий формирования заморов в мелководных водоемах на многопроцессорной вычислительной системе//Вычислительные методы и программирование. -2013. -Т. 14. С. 103–112.

6.      Проценко Е. А., Чистяков А. Е., Программная реализация математической модели распространения поверхностных волн // Альманах современной науки и образования. -2013. -№ 1 (65). С. 170–173.

7.      Проценко Е. А. Модель и алгоритмы решения задачи о транспорте наносов // Известия Южного федерального университета. Технические науки. 2009. Т. 97. № 8. С. 71–75.

8.      Проценко Е. А. Двумерная конечно-разностная модель формирования наносов в прибрежной зоне водоема и ее программная реализация// Инженерный вестник Дона. 2010. Т. 13. № 3. С. 23–31.

9.      Проценко Е. А. Программная реализация математической модели транспорта наносов в прибрежной зоне водоема// Вестник Таганрогского государственного педагогического института. 2012. № 1. С. 48–55.

10.  Самарский А. А. Теория разностных схем. М. Наука, 1989.

11.  Сухинов А. И. Двумерные схемы расщепления и некоторые их приложения. -М.: МАКС Пресс, 2005. -408 с.

12.  Сухинов А. И., Чистяков А. Е., Фоменко Н. А. Методика построения разностных схем для задачи диффузии-конвекции-реакции, учитывающих степень заполненности контрольных ячеек // Известия Южного федерального университета. Технические науки. 2013. № 4. С. 87–98.

13.  Сухинов А. И., Чистяков А. Е., Бондаренко Ю. С. Оценка погрешности решения уравнения диффузии на основе схем с весами//Известия ЮФУ. Технические науки. -2011. -№ 8 (121). С. 6–13.

Обсуждение

Социальные комментарии Cackle