Библиографическое описание:

Редькина Т. В., Кучукова Н. Н. Построение 2+1-мерных интегрируемых уравнений // Молодой ученый. — 2013. — №12. — С. 20-24.

Введение.

Большинство процессов и явления окружающего мира представляются в виде нелинейных моделей. В связи с этим появилась необходимость научиться решать именно нелинейные уравнения, не пытаясь заменить их слишком упрощенными приближенными линейными уравнениями. Одним из направлений, которое сыграло важную роль в формировании современных представлений о свойствах нелинейных волновых процессов, является теория солитонов. Набор солитонных моделей весьма узок и содержит не более двух десятков важных для практики солитонных уравнений, например, уравнение Кортевега-де-Вриза (КдВ), Нелинейное уравнение Шредингера (НУШ), Кадомцева-Петвиашвилли (КП). Sin -Gordon (SG) и т. д. [1] В связи с этим остро встал вопрос о сводимости достаточно широкого класса уравнений к солитонным уравнениям (задача редукции).

Рассмотрим способы построения двумерных интегрируемых уравнений, имеющих солитонные решения и интегрируемых с помощью обратной задачи рассеивания.

Метод построения двумерного интегрируемого уравнения, связанный с уравнением Лакса.

Пусть - оператор Шрёдингера,

                                                                (1)

— кососимметрический оператор третьего порядка, где - неизвестная функция. Функции и  необходимо найти из уравнения Лакса .

Коммутатор операторов L и A имеет вид

                        (2)

Тогда уравнение Лакса эквивалентно системе уравнений

 

                       (3)

Уравнения во второй строке (3) являются следствиями уравнений первой строки, в результате находим

 .                                                                   (4)

Будем полагать, что. Тогда уравнений (3) примет вид

                                                                                  (5)

Для функций вида уравнение (5) переходит в уравнение Кортевага-де Вриза на функцию

                                                                                               (6)

Для функций вида уравнение (3) переходит в уравнение

                                                                                  (7)

Оно также является интегрируемым модельным уравнением для распространения длинных волн в среде с нелинейной дисперсией. Если к оператору (1) добавить оператор

,                                                                              (8)

то из уравнения Лакса получим нелинейное уравнение вида

                                             (9)

Уравнение (9) эквивалентно уравнению (5) и преобразуется в него заменой координат .

Метод построения нового двумерного интегрируемого уравнения

Пусть функция зависит от трех переменных, L — оператор Шрёдингера, оператор А — сумма операторов

                             (10)

Тогда операторное уравнение

                                                                                              (11)

будет эквивалентно следующему уравнению

.                                              (12)

Это новое двумерное дифференциальное уравнение, так же как и уравнение (5), может быть решено методом обратной задачи рассеивания. [2]

Большинство известных солитонных уравнений описывают поведение функций, зависящих от двух пространственно — временных переменных. Вследствие этого актуальность приобретает задача посроения 2+1-мерного дифференциального уравнения. Рассмотрим способ получения такого уравнения из операторного уравнения Лакса

.                                                                                                  (13)

Теорема. Уравнение

    (14)

обладает парой Лакса с операторами L и А вида

,

.

где ,  — произвольная функция.

Доказательство. Рассмотрим частный случай, когда оператор L не содержит дифференцирования по х и имеет структуру

 ,                                                                            (15)

                                                     (16)

где , k –произвольные постоянные, vij, uij — произвольные функции трех переменных х, у и t. Такой выбор операторов обуславливает равенство нулю коэффициентов при дифференциалах , , , .

Выведем уравнение в частных производных, эквивалентное операторному уравнению Лакса. Для этого найдем элементы матричного уравнения , используя обозначение  и принимая во внимание условие :

                           (17)

                                                       (18)

                                                                                                   (19)

                          (20)

С учетом равенства (18) определим дополнительные условия так чтобы

,                                                                                                    (21)

                                                                                                (22)

Подставим найденные значения в оставшуюся систему (10.6–9)

            (23)

                                            (24)

                            (25)

Найдем разность (23) и (25):

,

или ,

что позволяет определить функцию

.                                                                            (26)

Выразим  из (25)

.                           (27)

и выполним подстановку найденной функции (26)

Найденное соотношение (27) подставим в (24)

и умножим все члены на

тогда выделяя полные производные, имеем

или

,

в результате можно найти функцию

.                                                                                  (28)

И так, в ходе преобразований системы (10.12–14) из (24) найдена функция , а из (25) — , поэтому осталось единственное уравнение (23), связывающее две функции  и

,   (29)

где .

В последующих исследованиях будем считать произвольную функцию  тогда уравнение примет вид

                   (30)

Полученное уравнение в частных производных имеет вид локального закона сохранения, при этом функция  является произвольной и может описывать некоторое возмущение уравнения. При подстановке в (15), (16) найденные значения , , ,  из равенств (21), (22), (28), (26) получим операторы Лакса.

Уравнения  и (29) имеют общей оператор рассеяния L, а, следовательно, уравнения на собственные значения совпадают формально, но при этом собственное значение оператора L в одном случае являются постоянными, а во втором представляют собой некоторые функции, зависящие от дополнительной переменной у.

Литература:

1.                  Журавлев В. М. Нелинейные волны в многокомпонентных системах с дисперсией и диффузией. Точно решаемые модели. Ульяновск: УлГУ, 2001.

2.                  Богоявленский О. И. Опрокидывающиеся солитоны. М.: Наука. 1991.

Обсуждение

Социальные комментарии Cackle