Библиографическое описание:

Цветкова Е. Г., Царьков В. В. Решение задачи об управлении обучением студенческого коллектива // Молодой ученый. — 2010. — №11. Т.1. — С. 40-42.

Многочисленные модели процессов управления обучением описаны в литературе [2-5]. Для их качественного исследования может быть применен широкий спектр  методов оптимального управления. В то же время задачи управления не всегда могут быть решены аналитически, что приводит к необходимости разработки численных методов их решения. В настоящее время разработано большое количество численных методов решения задач оптимального управления и нелинейного программирования и работа по их созданию и совершенствованию продолжается. Вычислительные подходы к решению задач нелинейного программирования и поиска оптимального управления получили широкое освещение и систематизацию в работах Ю.Г.Евтушенко [1]. Целью данной работы является разработка и исследование численного алгоритма для решения задачи управления обучением студенческого коллектива, формализуемой как задача оптимального управления.

Рассмотрим модель распределения времени между овладением знаниями и развитием умений. Полагаем, что знание состоит из информации (чистого знания)  и  умения (способности использовать имеющиеся сведения для достижения новых целей, методически работать).  Пусть – объем сведений, накопленных студентом к моменту времени t (чистое знание),  – объем накопленных умений, навыков решать задачи, разбираться в излагаемом материале; – доля времени, отведенного на накопление знаний в промежутке времени . Полагаем, что увеличение  объема знаний студента пропорционально затраченному на это времени  и накопленным умениям:

,

(1)

где k1 > 0 – коэффициент, зависящий от индивидуальных особенностей учащегося.

Увеличение умений за то же время пропорционально затраченному на это времени ,  имеющимся умениям  и знаниям :

,

(2)

где  > 0 – коэффициент, также зависящий от индивидуальных особенностей.

Таким образом, учащийся тем быстрее приобретает умения, чем больше он уже знает и умеет; чем больше умеет, тем быстрее усваивает новые знания. В то же время заметим, что на правую часть уравнения (1) влияют только приобретенные в прошлом активные знания, примененные при решении задач и перешедшие в умения.

Задача заключается в поиске такого управления  из отрезка [0;1], которое обеспечит получение максимального объема знаний за заданный промежуток времени T. Сделаем замену переменных: , . В результате перейдем к системе, не содержащей неизвестных коэффициентов:

,   .

(3)

Таким образом, задача об управлении процессом обучения формализуется в виде задачи оптимального управления:

 

,

(4)

при динамических ограничениях:

,    ,

(5)

ограничениях на управление:

, ,

(6)

и граничных условиях:

,     .

(7)

 

 

Разобьем равномерно отрезок  точками , , полагая  , , , . Обозначим , , .  Используем формулы Эйлера аппроксимации производных: , , . Для вычисления интеграла в целевом функционале используем формулу левых прямоугольников.

Дискретная задача, аппроксимирующая (4)-(7) с точностью , имеет вид:

,

,      ,  

  .

(8)

Введем функцию

Из необходимых условий оптимальности L - функции получаем рекуррентные соотношения для вычисления импульсов, что позволяет сформулировать следующее утверждение.

Теорема.Пусть  – локально оптимальное решение задачи (8), тогда  определяются по формулам:

,

,    .

(9)

производная L-функции по управлению

С использованием метода проекции градиента с учетом формул (9) построено решение задачи при выборе параметров: , q=1000, T=1. Результаты численных расчетов приведены на рис.1-3, оптимальное значение функционала , количество итераций метода .

Рис. 1 - График

Рис. 2 - График

 

Рис. 3 - График

 

Результаты, полученные численно, вполне соответствуют эмпирическим представлениям об оптимальной организации учебного процесса. Модель определяет численные значения доли времени u(t), идущей на повышение знаний, и доли материала (1-u(t)), излагаемого на заключительных лекциях без проработки на семинарах.

Литература:

1.      Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.

2.      Неуймин Я.Г. Модели в науке и технике. История, теория, практика. - Л.: Наука, 1984. - 190 с.

3.      Моисеев Н.Н. Математические задачи системного анализа. - М.: Наука, 1981. - 488с.

4.      Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. -296с.

5.      Орлов А.И. Математические модели отдельных сторон обучения математике. – В: «Сб. научно-методических статей по математике. (Проблемы преподавания математики в вузах.)» Вып.7. - М.: Высшая школа, 1978. С.28-34.

6.      Гольштейн Е.Г. Выпуклое программирование (элементы теории). – М.: Наука, 1970. Болтянский В.Г. Математические методы оптимального управления. – М.: Наука, 1969.



[1] Работа выполнена при финансовой поддержке ведущих научных школ (НШ-4096.2010.1)

Обсуждение

Социальные комментарии Cackle