Библиографическое описание:

Максименко В. В. Построение равноугольных жёстких фреймов // Молодой ученый. — 2010. — №7. — С. 15-19.

Статья опирается на результаты работы [1]. Приводятся ограничения, которым должны удовлетворять  - размерность пространства и- количество векторов, составляющих фрейм, при которых существуют равноугольные жёсткие фреймы. Описывается алгоритм построения равноугольных жёстких фреймов на основе сигнатурных матриц. Приводятся результаты построения равноугольных жёстких фреймов с использованием представленного алгоритма для случая .

 Используем стандартное скалярное произведение векторов из  и норму . Система векторов  из  называется равноугольной, если

                      при всех     и        при                            

Здесь  - фиксированное число. Нас интересует случай . В докладе [2] выяснено, при каком значении  равноугольная система является жёстким фреймом. Справед­ливо

ПРЕДЛОЖЕНИЕ 1. Равноугольная система является жёстким фреймом тогда и только тогда, когда

                                                                                                                         

 

 Необходимое и достаточное условия существования равноугольного жёсткого фрейма

К сожалению, равноугольные жёсткие фреймы существуют не для всех пар . Чтобы выяснить для каких существуют, а для каких - нет, нам придётся проделать некоторые построения.

Пусть  - равноугольный жёсткий фрейм в , . Из столбцов  со­ставим матрицу  размера . По критерию жёсткого фрейма

                                                                                                                           

Рассмотрим теперь матрицу Грама . Для её элементов в силу равноугольности имеем

Поскольку  - жёсткий фрейм, то

Отсюда, в частности, следует, что .  Кроме того, справедливо равенство

                                                                                                     (1)

Рассмотрим матрицу   У неё ,   при . Вычислим матрицу  с учётом равенства (1):

                             

                                                     (2)

где

                                                                                  (3)

Из равенства (3) при  получим , откуда следует, что  является целым числом. Это одно из необходимых условий существования равноугольного жёсткого фрейма.

Чтобы сформулировать необходимое и достаточное условие введём понятие сигнатурной матрицы.

ОПРЕДЕЛЕНИЕ 1.  Симметричная матрица  размера  называется сигнатурной, если

                                           при

ТЕОРЕМА 1. Для того чтобы при данных  и , , существовал равноугольный жёсткий фрейм, необходимо и достаточно, чтобы выполнялись условия: 

    1.  число , определённое равенством (3) , является целым;

    2.  существует сигнатурная матрица Q такая, что

                                                                                                        (4)

Доказательство. Необходимость установлена выше. Докажем достаточность проще, чем в работе [1]. Выведем матрицу

                                      ,    где   

У неё , ;  при . Вычислим . С учётом  (4) элементарными вычислениями получим

 

  Из равенства  следует, что матрица  имеет собственные числа  и . Обозначим кратность первого числа через , тогда  имеет кратность . Поскольку , то .

Тогда симметричную матрицу G можно представить в виде  где  - ортогональная матрица, . Рассмотрим матрицу  размера  вида

                                    

где . Тогда  Для матрицы  справедливо равенство

                                                  

Столбцы  матрицы  образуют равноугольную систему. Действительно, ;      .

Кроме того, матрицы  и  имеют одинаковые ненулевые собственные числа. Следовательно, матрица  имеет только одно собственное число  кратности  и, значит,

                                                        

По определению система  - жёсткий фрейм в . Но тогда, по предложению 1, справедливо равенство

                                                       

 Отсюда                                    

 то есть . Построили равноугольный жёсткий фрейм в . Теорема доказана.

 

 Оценки числа элементов равноугольного жёсткого фрейма

В докладе [2] приведено простое доказательство следующего предложения.

ПРЕДЛОЖЕНИЕ 2. Пусть . Если  - равноугольный жёсткий фрейм в , то

                                                                                                                        (5)

Это неравенство в сочетании с теоремой 1 позволяет установить другое ограничение на число .

ПРЕДЛОЖЕНИЕ 3.  Пусть , . Если  - равноугольный жёсткий фрейм в , то

                                                 .                                                       (6)

Доказательство.  По теореме 1 фрейму  соответствует сигнатурная матрица , удовлетворяющая уравнению

                                                

 где  задано формулой (3). Заменим в этой формуле  на . Отметим, что

                                      

Поэтому сигнатурная матрица  удовлетворяет равенству

                                         

Поскольку , , то по теореме 1 существует равноугольный жёсткий фрейм  в пространстве .

По предложению 2 справедливо неравенство (6). Предложение доказано.

 

Неравенства (5) и (6) вместе с требованием целочисленности  позволяют отбросить многие пары , для которых заведомо не существуют равноугольные жёсткие фреймы. Приведём ряд примеров для случая , .

ПРИМЕР 1. . Неравенство (5) имеет вид .

При  не выполнено неравенство (6).

При  оба неравенства (5) и (6) превращаются в равенства. Возникает подозрение, что в случае  есть равноугольный жёсткий фрейм. В явном виде он выписан в докладе [2].

ПРИМЕР 2. . Неравенство (5) имеет вид .

При  не выполнено неравенство (6).

При  число  не целое.

При  выполнены неравенства (5) и (6) и число . Как будет показано далее, в случае  равноугольный жёсткий фрейм не существует. 

 

 Нахождение равноугольных жёстких фреймов в случае  методом перебора сигнатурных матриц

Случай  является довольно исключительным. При  число  равно нулю и по теореме 1 для существования равноугольного жёсткого фрейма необходимо и достаточно существование сигнатурной матрицы , удовлетворяющей равенству

                                                                                                                     (7)

По определению сигнатурная матрица  симметрична. Поэтому если через  обозначить -ю строку , то условие (7) запишется в виде

                                              

Условие  выполняется автоматически так как каждая строка  содержит один ноль и  элементов, равных . Так что нужно только обеспечить ортогональность строк:  при .

Отметим, что если сигнатурная матрица  удовлетворяет (7), то после умножения го столбца и строки  на  снова получим решение (7). Поэтому можно считать, что в первой строке  стоят единицы:   

Далее можно пытаться строить строки  так, чтобы каждая строка была ортогональна предыдущим строкам.

При  это удаётся проделать вручную и получить матрицу

                                        

 удовлетворяющую равенству  (этот же пример приведён в [1]).

При  можно с помощью компьютерной программы перебирать элементы . Всего 21 элемент и  комбинаций . Полный перебор приводит к выводу, что сигнатурная матрица, удовлетворяющая равенству  не существует, и, следовательно, не существует равноугольный жёсткий фрейм при .

При  программа нашла сигнатурную матрицу

                        

удовлетворяющую равенству .

Далее с помощью компьютерной системы Maple 9.5 проводим символьные вычисления, указанные в доказательстве теоремы 1: строим матрицу , находим её ортогональное разложение , строим матрицу  размера :

С помощью Maple 9.5 легко проверяются равенства  и . Тем самым столбцы матрицы  образуют равноугольный жёсткий фрейм в .

Точно также программа нашла сигнатурные матрицы при  и , а с помощью Maple 9.5 построены равноугольные жёсткие фреймы в  и .

 

 Необходимое условие существования равноугольного жёсткого фрейма при . Это условие установлено в работе [3].

ТЕОРЕМА 2. Пусть , . Если существует равноугольный жёсткий фрейм   в , то  - нечётное и  является суммой двух квадратов целых чисел.

В качестве иллюстрации приведём примеры.

При чётном  и  равноугольный жесткий фрейм не существует.

При  числа  являются суммами квадратов двух целых чисел:

                                   

 В случаях , ,  существование равноугольных жёстких фреймов подтверждается расчётами (см. п. 4).

При ,  число  не представимо в виде суммы двух квадратов и по теореме 2 равноугольный жёсткий фрейм не существует.

 

Литература:

1.           Holmes R. B., Paulsen V. I. Optimal frames for erasures // Linear Algebra Appl. 2004. V. 377. P. 31-51. 

2.           Малозёмов В. Н., Певный А. Б. Равноугольные жёсткие фреймы // Проблемы математического анализа. 2009. Выпуск 39. С. 3-25.

3.           Sustik M. A., Tropp J. A., Dhillon I. S., Heath R. W. On the existence of equiangular tight frames  // Linear Algebra Appl. 2007. V. 426. P. 619-635.

Обсуждение

Социальные комментарии Cackle