Библиографическое описание:

Емельянов А. А., Бесклеткин В. В., Забузов Е. И., Волков Е. Н., Попов С. Ю., Соснин А. С., Вандышев Д. М., Найф А. В., Воротилкин Е. А., Камолов И. И. Математическая модель асинхронного двигателя с переменными ψr – ψm на выходе интегрирующих звеньев в Simulink-Script // Молодой ученый. — 2017. — №10. — С. 14-19.



Данная работа является продолжением статьи [1], в которой проекции векторов и были получены на выходе апериодических звеньев. В этой статье проекции векторов выведены на основе интегрирующих звеньев.

В работе [1] было получено уравнение (13):

Потокосцепление ψrx по оси (+1) определится в следующей форме:

Структурная схема для определения ψrx приведена на рис. 1.

Рис. 1. Структурная схема для определения потокосцепления ψrx

Для определения ψmx приведем уравнение (14) из работы [1]:

Перенесем слагаемое в левую часть и умножим обе части уравнения на :

Обозначим и

Тогда ψmx определится в следующей форме:

Структурная схема для определения ψmx представлена на рис. 2.

Рис. 2. Структурная схема для определения ψmx

Аналогично, определим ψry и ψmy по оси (+j).

Выразим ψry из уравнения (15), полученного в работе [1]:

Структурная схема для определения ψry приведена на рис. 3.

Рис. 3. Структурная схема для определения ψry

Для определения ψmy приведем уравнение (16) из работы [1]:

Перенесем слагаемое в левую часть и умножим обе части уравнения на :

Отсюда потокосцепление ψmy определится в следующей форме:

Структурная схема для определения ψmy дана на рис. 4.

Рис. 4. Структурная схема для определения ψmy

На рис. 5 представлена структурная схема для реализации уравнения электромагнитного момента:

Рис. 5. Математическая модель определения электромагнитного момента m

Из уравнения движения выразим механическую угловую скорость вращения вала двигателя (рис. 6):

Рис. 6. Математическая модель уравнения движения

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными ψrψm на выходе интегрирующих звеньев приведена на рис. 7. Параметры асинхронного двигателя рассмотрены в работах [2] и [3].

F:\ALL\С12\2017\3. Март\2.2\myfig.meta

Рис. 7. Математическая модель асинхронного двигателя с переменными ψrψm на выходе интегрирующих звеньев

Расчет параметров производим в Script:

PN=320000;

UsN=380;

IsN=324;

fN=50;

Omega0N=104.7;

OmegaN=102.83;

nN=0.944;

cos_phiN=0.92;

zp=3;

Rs=0.0178;

Xs=0.118;

Rr=0.0194;

Xr=0.123;

Xm=4.552;

J=28;

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Omegarb=Omegab/zp;

Zb=Ub/Ib;

Psib=Ub/Omegab;

Lb=Psib/Ib;

kd=1.0084;

Mb=kd*PN/OmegaN;

Pb=Mb*Omegarb;

rs=Rs/Zb;

lbs=Xs/Zb;

rr=Rr/Zb;

lbr=Xr/Zb;

lm=Xm/Zb;

Tj=J*Omegarb/Mb;

betaN=(Omega0N-OmegaN)/Omega0N;

SsN=3*UsN*IsN;

ZetaN=SsN/Pb;

ks=lm/(lm+lbs);

kr=lm/(lm+lbr);

lbe=lbs+lbr+lbs*lbr*lm^(-1);

roN=0.9962;

rrk=roN*betaN;

rs7=rs/kr-lbs*rrk/lbr;

rs8=rs-lbs*rrk/lbr;

Результаты моделирования асинхронного двигателя представлены на рис. 8.

Рис. 8. Графики скорости и момента

Литература:

  1. Емельянов А.А., Бесклеткин В.В., Забузов Е.И., Волков Е.Н., Попов С.Ю., Соснин А.С., Вандышев Д.М., Найф А.В., Воротилкин Е.А., Камолов И.И. Математическая модель асинхронного двигателя с переменными ψr – ψm на выходе апериодических звеньев в Simulink-Script // Молодой ученый. - 2017. - №10.
  2. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. - 654 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.

Обсуждение

Социальные комментарии Cackle