Библиографическое описание:

Емельянов А. А., Бесклеткин В. В., Забузов Е. И., Волков Е. Н., Попов С. Ю., Соснин А. С., Вандышев Д. М., Найф А. В., Воротилкин Е. А., Камолов И. И. Математическая модель асинхронного двигателя с переменными ψr – ψm на выходе апериодических звеньев в Simulink-Script // Молодой ученый. — 2017. — №10. — С. 5-14.



Данная работа является продолжением статьи [1], в которой были подробно даны способы и технологии получения пространственных векторов. В работах [2] и [3] приведено множество вариантов определения электромагнитных моментов комбинацией двух переменных (ψr – is, ψs – is, ψs – ψr и т.д.).

В наших статьях за 2015 г. приведены математические модели с переменными ψr и is. В этой работе рассмотрим моделирование асинхронного двигателя с короткозамкнутым ротором с переменными ψr и ψm. Так как главной целью является привлечение студентов к исследовательской работе, то в соответствии с нашей традицией, выводы всех уравнений приводим без сокращений.

Векторные уравнения асинхронного двигателя имеют следующий вид:

Переводим систему уравнений к изображениям :

(1)

(2)

(3)

(4)

(5)

(6)

Схема замещения и векторная диаграмма переменных [3] приведены на рис. 1 и 2.

Рис. 1. Связь токов и потокосцеплений в асинхронном двигателе

Рис. 2. Качественная картина расположения векторов в двигательном режиме асинхронного двигателя

Так как электромагнитный момент определяется через две переменные ψm и ψr, то из уравнений (1), …, (4) необходимо исключить переменные ir, is и ψs.

В работе [2] приведены следующие выражения векторных величин:

(7)

(8)

Из уравнения (7) определим :

(9)

Из уравнения (8) определим :

Подставим из уравнения (9):

Обозначим тогда:

(10)

Приведем из работы [2]:

(11)

В уравнение (11) подставим выражение из (10):

Обозначим :

где

Отсюда определится следующим образом:

(12)

В дальнейшем рассмотрим следующую систему уравнений:

Разложение векторных величин по проекциям:

Записываем уравнения (1), (2), (9), (10) и (12) по проекциям.

Уравнение (1):

По оси (+1):

(1’)

По оси (+j):

(1”)

Уравнение (2):

По оси (+1):

(2’)

По оси (+j):

(2”)

Уравнение (9):

По оси (+1):

(9’)

По оси (+j):

(9”)

Уравнение (10):

По оси (+1):

(10’)

По оси (+j):

(10”)

Уравнение (12):

По оси (+1):

(12’)

По оси (+j):

(12”)

Рассмотрим систему уравнений (1’), (2’), (9’), (10’), (12’) и (12”) по проекции x (+1):

Подставим irx из уравнения (9’) в (2’):

Выразим , которое нам понадобится в дальнейшем:

(13)

Для получения апериодического звена вынесем в левую часть слагаемое :

Умножим обе части уравнения на и вынесем за скобки в левой части:

Обозначим

Тогда ψrx определится в следующей форме:

Структурная схема для определения потокосцепления ψrx приведена на рис. 3.

Рис. 3. Структурная схема для определения потокосцепления ψrx

В уравнение (1’) подставим isx, ψsx и ψsy из уравнений (10’), (12’) и (12”):

В полученное уравнение подставим выражение из уравнения (13):

(14)

Перенесем слагаемые с переменными ψmx в левую часть:

Умножим обе части уравнения на :

Обозначим и .

Тогда ψmx определится в следующей форме:

Структурная схема для определения ψmx дана на рис. 4.

Рис. 4. Структурная схема для определения ψmx

Рассмотрим систему уравнений (1”), (2”), (9”), (10”), (12”), (12’) по проекции y (+j):

Из уравнения (2”) выразим , предварительно подставив iry из (9”):

(15)

В левую часть вынесем :

Умножим обе части уравнения на lσr и вынесем r за скобки в левой части:

Отсюда ψry определится в следующей форме (рис. 5):

Рис. 5. Структурная схема для определения ψry

Подставим в уравнение (1”) переменные isy, ψsy и ψsx из (10”), (12”) и (12’):

Подставим в полученное уравнение выражение из (15):

(16)

Умножим обе части уравнения на и перенесем слагаемые с ψmy в левую часть:

Отсюда потокосцепление ψmy:

Структурная схема для определения ψmy представлена на рис. 6.

Рис. 6. Структурная схема для определения ψmy

На рис. 7 представлена структурная схема для реализации уравнения электромагнитного момента (5):

Рис. 7. Математическая модель определения электромагнитного момента m

Наконец, из уравнения движения (6) выразим механическую угловую скорость вращения вала двигателя (рис. 8):

Рис. 8. Математическая модель уравнения движения

Математическая модель асинхронного двигателя с короткозамкнутым ротором с переменными ψrψm на выходе апериодических звеньев приведена на рис. 9. Параметры асинхронного двигателя рассмотрены в работах [2] и [3].

Расчет параметров производим в Script:

PN=320000;

UsN=380;

IsN=324;

fN=50;

Omega0N=104.7;

OmegaN=102.83;

nN=0.944;

cos_phiN=0.92;

zp=3;

Rs=0.0178;

Xs=0.118;

Rr=0.0194;

Xr=0.123;

Xm=4.552;

J=28;

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Omegarb=Omegab/zp;

Zb=Ub/Ib;

Psib=Ub/Omegab;

Lb=Psib/Ib;

kd=1.0084;

Mb=kd*PN/OmegaN;

Pb=Mb*Omegarb;

rs=Rs/Zb;

lbs=Xs/Zb;

rr=Rr/Zb;

lbr=Xr/Zb;

lm=Xm/Zb;

Tj=J*Omegarb/Mb;

betaN=(Omega0N-OmegaN)/Omega0N;

SsN=3*UsN*IsN;

ZetaN=SsN/Pb;

ks=lm/(lm+lbs);

kr=lm/(lm+lbr);

lbe=lbs+lbr+lbs*lbr*lm^(-1);

roN=0.9962;

rrk=roN*betaN;

rs7=rs/kr-lbs*rrk/lbr;

rs8=rs-lbs*rrk/lbr;

Tr5=lbr/rrk;

Ts7=lbe/rs7;

F:\ALL\С12\2017\3. Март\1.2\myfig.meta

Рис. 9. Математическая модель асинхронного двигателя с переменными ψrψm на выходе апериодических звеньев

Результаты моделирования асинхронного двигателя представлены на рис. 10.

Рис. 10. Графики скорости и момента

Литература:

  1. Емельянов А.А., Козлов А.М., Бесклеткин В.В., Авдеев А.С., Чернов М.В., Киряков Г.А., Габзалилов Э.Ф., Фуртиков К.А., Реутов А.Я., Королев О.А. Пространственные векторы в асинхронном двигателе в относительной системе единиц // Молодой ученый. - 2015. - №11. - С. 133-156.
  2. Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. – Екатеринбург: УРО РАН, 2000. - 654 с.
  3. Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.

Обсуждение

Социальные комментарии Cackle