Библиографическое описание:

Каюгина С. М. Решение задач оптимального раскроя средствами MS Excel // Молодой ученый. — 2016. — №23. — С. 54-57.



В статье рассматривается методика решения задачи оптимального раскроя материалов на заготовки средствами MSExcel.

Ключевые слова: математическая модель, критерий оптимальности, рациональный способ раскроя

Большинство материалов, используемых в промышленности, поступает на производство в виде стандартных форм. Непосредственное использование таких материалов, как правило, невозможно. Предварительно их разделяют на заготовки необходимых размеров. Это можно сделать, используя различные способы раскроя материала.

Задача оптимального раскроя состоит в том, чтобы выбрать один или несколько способов раскроя материала и определить, какое количество материала следует раскраивать, применяя каждый из выбранных способов. В качестве критерия выбора оптимальных способов раскроя могут быть использованы минимум отходов, минимальный расход материалов, максимум комплектов, включающих заготовки различных видов.

Задачи такого типа возникают в строительстве, машиностроении, лесной, деревообрабатывающей и лёгкой промышленности. От успешности их решения зависят экономия материалов и снижение отходов.

Рассмотрим методику решения задачи раскроя листовых материалов средствами MSExcel.

Пример. На предприятии имеются древесностружечные плиты (ДСтП) нескольких форматов, приведенные в таблице 1. Спецификация заготовок приведена в таблице 2. Требуется составить оптимальный план раскроя плит ДСтП на заготовки по критерию минимума отходов, при условии выполнения заданной спецификации заготовок.

Таблица 1

Спецификация плит ДСтП

п/п

Формат плиты, ммхмм

Количество плит, шт.

1

2440x1220

6000

2

1525x1525

8000

Таблица 2

Спецификация заготовок

п/п

Формат плиты, ммхмм

Количество заготовок на годовую программу, шт.

1

1000x600

12000

2

800x600

12000

3

600x600

18000

4

300x450

12000

5

300x300

24000

На первом этапе решения задачи определяются рациональные способы раскроя материала. Разрабатываются карты раскроя, представляющие собой графическое расположение заготовок на стандартном формате раскраиваемого материала.

При разработке карт раскроя требуется соблюдать следующие условия:

− максимальный выход деталей;

− минимальное количество типоразмеров деталей при раскрое одного формата любого материала;

− минимальное повторение одних и тех же деталей в разных картах раскроя;

− обеспечение минимума отходов [2, c. 49].

В нашем примере использовано шесть карт раскроя, по три для каждого размера древесностружечных плит. В таблице 3 приведён выход заготовок и площадь отходов.

Таблица 3

Расчет количества заготовок

Размер заготовки

Количество заготовок, получаемых по карте раскроя, шт.

Плита 2440x1220

Плита 1525x1525

1

2

3

4

5

6

1000x600

4

-

-

-

2

-

800x600

-

4

-

-

-

2

600x600

-

-

8

-

-

2

300x450

-

5

-

6

5

-

300x300

-

-

-

15

-

-

Площадь отходов, м2

0,577

0,382

0,097

0,166

0,586

0,646

На втором этапе решается задача линейного программирования для определения интенсивности использования рациональных способов раскроя.

Составим математическую модель оптимизации.

В качестве неизвестных примем Хj количество плит раскраиваемых j-м способом.

Целевая функция (минимум отходов):

F=0,577Х1+0,382Х2+0,097Х3+0,166Х4+0,586Х5+0,646Х6min

Система ограничений:

  1. по выпуску заготовок:

1+2Х5=12000

2+2Х6=12000

3+2Х6=18000

2+6Х4+5X5=12000

15Х4=24000

  1. по запасам сырья:

Х123<=6000

Х456<=8000

  1. по неотрицательности переменных:

Х1,…, Х6>=0

Симплекс-метод, основанный на идеях Л. В. Канторовича, был описан и детально разработан рядом ученых из США в середине 20 века. Надстройка MS Excel «Поиск решения» (Solver) использует этот алгоритм. Именно с помощью симплекс-метода и MS Excel мы будем решать задачу оптимального раскроя [3].

Оформим в MSExcel таблицу с исходными данными и введём формулы (рис.1):

Рис. 1. Оформление таблицы с исходными данными в MSExcel

На вкладке «Данные» нажимаем кнопку «Поиск решения». Откроется диалоговое окно «Поиск решения», в котором указываем ячейку целевой функции, её направление, изменяемые ячейки и задаём ограничения задачи (рис. 2).

Рис. 2. Диалоговое окно «Поиск решения»

Щелчком по кнопке «Параметры» заходим в диалоговое окно «Параметры поиска решения» и устанавливаем флажок «Линейная модель». Нажимаем ОК. Выполняем поиск решения.

Рис. 3. Результат решения

На рисунке 3 показан оптимальный план раскроя. Следует раскроить древесностружечные плиты размера 2440х1220 первым способом 3000 шт., вторым способом 480 шт. и третьим способом 990 шт. Всего плит данного размера потребуется 4470 шт.

Древесностружечные плиты размера 1525х1525 следует раскроить четвертым способом 1600 шт. и шестым способом 5040 шт. Пятую карту раскроя использовать нерационально. Всего плит этого размера потребуется 6640 шт.

Полученный в оптимальном решении вариант использования карт раскроя плит обеспечит выполнение плана по выходу заготовок всех размеров. Отходы будут минимальными и составят 5531,83 м2.

Литература:

  1. Пижурин А. А. Основы моделирования и оптимизации процессов деревообработки / А. А. Пижурин. — М.: Лесная промышленность, 2004.
  2. Яцун И. В., Чернышев О. Н. Моделирование и оптимизация процессов деревообработки. Часть 1. — Екатеринбург: Редакционно-издательский отдел УГЛТУ, 2011.
  3. Линейный раскрой в Excel [Электронный ресурс] — Режим доступа: http://al-vo.ru/spravochnik-excel/linejnyj-raskroj-v-excel.html

Обсуждение

Социальные комментарии Cackle