Библиографическое описание:

Трубиенко О. В., Кузнецов В. И., Кривенцов С. М., Вершинин А. Н., Ануфриев И. Б., Беляева Е. Г., Визавитин О. И., Головченко Д. А., Красовская Н. В., Юрсков С. В. Инновационная модульная система интеллектуального комплексного мониторинга динамических объектов и ее роль в мониторинге и защите окружающей среды // Молодой ученый. — 2016. — №23. — С. 96-105.



On the basis of statistical data the EMERCOM of Russia on emergency situation the authors come to the conclusion about the need to create a complex system of intellectual-term monitoring of dynamic objects of industrial facilities and residential buildings. The article describes the composition and operation of the monitor system of complex the monitor.

Keywords: innovation, safety, security complex, ecology

В настоящее время в промышленности, транспорте, энергетике и других сферах деятельности человека существует потребность в контроле за состоянием различных сложных технических систем, в том числе и для обеспечения их экологической безопасности. При этом в зависимости от сферы, в которой работает то или иное предприятие или организация, могут выдвигаться различные требования к средствам мониторинга и обеспечения комплексной безопасности. Одна из важнейших причин создания универсальной платформы комплексного мониторинга и обеспечения комплексной безопасности, это необходимость создать систему способную без существенных изменений осуществлять централизованный контроль состояния различных технических и экосистем, а также осуществлять сбор, анализ информации и выдачу рекомендаций эксплуатирующему ее персоналу.

Классические мониторинговые системы с каналами управления могут быть представлены следующей структурной схемой (рис. 1). Причем, группа элементов 1 определяется спецификой объекта мониторинга, а группа элементов 2 — спецификой обработки и представления результатов мониторинга.

Рис. 1. Структура системы мониторинга

Силами специалистов кафедры и технологической площадки НПП «Кедр-М» в настоящий момент глубоко проработаны вопросы обработки и представления результатов мониторинга. На этой базе в настоящее время ведется разработка системы комплексной безопасности многоквартирных домов и сооружений промышленного назначения на основе применения гидросенсоров, датчиков утечки газа (метан, угарный газ) и электрических кабелей с огнестойкой оболочкой.

Актуальность разработки данной системы определяется большим количеством пожаров на объектах промышленного и жилого назначения (145 686 в 2015 г.), большим количеством жертв (погибло 9 377 человек в 2015 г.) и материальным ущербом (18 814 077 тыс. руб. в 2015 г.). Основными причинами пожаров, по данным МЧС России, являются: нарушение правил установки и эксплуатации электрооборудования (27,89 %), нарушение правил установки и эксплуатации печей (14,36 %) и неосторожное обращение с огнем (30,59 %). Растет стоимость причиненного ущерба и в случае аварий на системах водо- и теплоснабжения.

Система комплексной безопасности в этом случае будет выглядеть следующим образом (рис. 2).

Рисю 2. Система комплексной безопасности промышленных объектов и жилых домов

Однако, возможности применения подобной системы не ограничиваются только домами или предприятиями. С учетом модульности системы и взаимозаменяемости элементов, одним из основных назначений системы комплексной безопасности (СКБ) может стать мониторинг лесных пожаров. Ведь экологические последствия от лесных пожаров довольно значительны: происходит загрязнение атмосферного воздуха углекислым газом и продуктами пиролиза лесных горючих материалов, выгорания кислорода. С лесными пожарами в воздух попадают частицы сажи, состоящие из углерода и продуктов неполного сгорания древесины. Задымление воздуха приводит к ухудшению микроклимата земли; увеличению числа туманных дней, уменьшению прозрачности атмосферы и обусловленному им снижению видимости, освещенности, ультрафиолетовой радиации. И даже очень малые концентрации некоторых веществ являются весьма опасными.

Немного статистики: ежегодно в России регистрируется от 10 тысяч до 35 тысяч лесных пожаров, охватывающих площади от 500 тыс. до 2 млн 500 тыс. га. По данным Федеральной службы государственной статистики (Росстат), всего с начала 1992 года по конец 2015 года в России произошло около 600 тысяч (!) лесных пожаров.

По данным Федерального агентства лесного хозяйства, в среднем размер ущерба от лесных пожаров в год составляет около 20 млрд рублей.

В этом случае дополнительным элементом системы комплексной безопасности будут беспилотные летательные аппараты (БПЛА) и система комплексной безопасности примет вид как на рисунке 3.

Рис. 3. Система комплексной безопасности жилых объектов и окружающей среды

Использование беспилотных летательных аппаратов обеспечивает патрулирование больших территорий без опасности для людей. БПЛА сегодня эффективно используют в двух основных направлениях с целью (рис. 4):

1.Патрулирования лесных массивов на предмет наличия очагов пожара.

2.Безопасного сбора информации о характеристике пожара и её передачи в центр оперативного реагирования.

Беспилотные летательные аппараты имеют одно значительное преимущество — недосягаемость для огня и возможность работы в интенсивном режиме на протяжении длительного времени. С помощью специального программного обеспечения ведется обработка больших объемов информации, что способствует повышению эффективности надзора за лесными массивами.

Кроме того, подобные БПЛА могут быть использованы для:

‒ борьбы с браконьерами (в Мексике власти используют дронов для борьбы с браконьерами, угрожающими популяции морских черепах. В некоторых районах использование БЛА позволило сократить число преступлений на 96 %);

‒ выявления миграционных путей животных и наблюдение за редкими видами животных;

‒ выявления нарушений норм экологического законодательства (в Китае дроны используются для мониторинга загрязнения воздуха над электростанциями, очистительными заводами и другими потенциальными нарушителями);

‒ мониторинга почвы и посевов.

C:\Users\Maikk\Desktop\дрон-беспилотник-227435.jpg

Рис. 4. Использование БПЛА в мониторинге экологической обстановки

Уникальность системы комплексной безопасности (СКБ) заключается в обеспечении унификации формирования и компактности представления результатов оценки состояния объектов, по осуществляемым видам контроля независимо от типов объектов, количества, физической сущности и единиц измерения их характеристик.

Удобство использования СКБ заключается в следующем:

‒ обеспечение наглядности представления результатов мониторинга;

‒ простота эксплуатации средств СКБ;

‒ представление результатов мониторинга объекта на любые средства отображения: мобильный телефон, планшетный или стационарный компьютер и т. д., а также при необходимости на бумажном носителе;

‒ обеспечение оперативного формирования рекомендаций и предложений органам управления и эксплуатирующим организациям;

‒ голосовое сопровождение рекомендаций и предложений органам управления и эксплуатирующим организациям;

‒ обеспечение доступа должностных лиц к информации о состоянии объектов мониторинга (ОМ) в любое время и в любом месте;

‒ обеспечение слежения за состоянием ОМ в режиме реального времени;

‒ обеспечение своевременного информирования органов государственного управления о состоянии ОМ;

‒ обеспечение своевременного SMS информирования жителей и персонала предприятий (организаций) о нештатных ситуациях.

Схема формирования образа состояния объекта представлена на рис. 5.

Основными отличиями от аналогичных систем являются:

‒ минимальный трафик — в каналы связи передаются только значения отклонений от нормы;

‒ обеспечение защиты информации — в каналы связи передаются только абсолютные безразмерные значения приращений параметров;

‒ высокая помехозащищенность — применяется помехоустойчивое безызбыточное кодирование;

‒ минимальная нагрузка на оператора — система реагирует только на событие;

‒ масштабирование информации для различных уровней управления — руководители и исполнители;

‒ оперативное информирование населения и сотрудников о нештатных ситуациях по общедоступным каналам.

Рис. 5. Схема формирования образа состояния объекта

Применение системы комплексной безопасности на основе инновационных разработок дает следующие конкурентные преимущества:

‒ определение места утечки жидкости и скорости ее утечки;

‒ упрощение и удешевление процедуры монтажа системы комплексной безопасности;

‒ создание единой системы безопасности в рамках сооружения;

‒ реакция аварийных служб на событие в реальном масштабе времени и информирование жителей (персонала) [1].

Одним из направлений обеспечения комплексной безопасности является уменьшение значений наведенной мощности электромагнитных полей радиочастотного диапазона в высотных домах и офисах из-за размещения на крышах зданий (или рядом со зданием) ретрансляционного и усилительного оборудования сотовых и телекоммуникационных компаний. С этой целью разработаны композитные полимерные материалы, отражающие СВЧ излучения. На их основе разрабатываются специальные материалы, поглощающие СВЧ излучения за счет интерференции. Для этого слои диэлектрика и токопроводящие слои чередуются через расстояние равное λ/4, с помощью трех токопроводящих слоев (центральный заземлен) можно получить резонансный поглотитель [2]. Большую перспективу имеют эти технологии и для создания специальных корпусов радиоэлектронной аппаратуры, обеспечивающих одновременно эффективный теплоотвод и подавление электромагнитных излучений.

Еще одним направлением применения систем комплексной безопасности может быть экологический мониторинг окружающей среды, который позволит выполнять непрерывный автоматизированный мониторинг состояния окружающей среды и обеспечивать своевременное информирование ответственных лиц достоверной информацией для принятия эффективных управленческих решений в области природоохранной деятельности.

http://diem.ru/files/1313/3431/8079/strukt_skhema.jpg

Рис. 6. Структурная схема системы экологического мониторинга

В состав такой системы должны входить (рис. 6):

‒ стационарные посты контроля (ПКЗ);

‒ передвижные экологические лаборатории (ПЭЛ);

‒ станции контроля вертикального профиля температур (инверсии атмосферы);

‒ автоматизированные системы контроля организованных промышленных выбросов (АСКПВ);

‒ система мониторинга качества воды (СМКВ);

‒ программное обеспечение указанных измерительных звеньев (для хранения, обработки и передачи информации);

‒ средства связи;

‒ центры приема информации (ЦМ);

‒ информационные табло и терминалы для вывода и представления информации.

Подобные системы экологического мониторинга в состоянии в автоматическом режиме контролировать более 50 различных параметров.

В автоматическом режиме в атмосфере контролируется содержание CO, NO, NO2, NOx, NH3, CnHm, CH4, O3, H2S, SO2, предельных углеводородов (С1-С5 и суммарно С1-С10), непредельных углеводородов (С6-С10 и суммарно С2-С5), непредельных ароматических углеводородов (бензол, толуол, этилбензол, ксилолы, стирол), пыли, с высокой чувствительностью в диапазонах измерения от 0,2 до 10 ПДК.

В полуавтоматическом режиме в воздухе рабочей зоны до 60 веществ органического происхождения проходят проверку на соответствие ПДК.

В ручном режиме выполняется забор проб воздуха для последующего определения загрязнения компонентов в стационарной аналитической лаборатории.

В автоматическом режиме контролируются также и метеопараметры (температура, давление, относительная влажность, скорость и направление ветра, осадки), радиационный фон, вертикальный профиль температур до высоты 1000 м.

В промышленных выбросах в автоматическом режиме проверяется содержание CO, NO, NO2, SO2, О2, СО2, Н2S и горючих газов, а также температура и расход газа.

Параметры водных объектов — температура, водородный показатель, электропроводность, растворенный кислород, ХПК, специфические загрязнители (например, ионы металлов, нитриты, фосфаты, аммоний и другие) контролируются автоматически.

Измеренные и обработанные данные от всех технических средств и точек контроля круглосуточно поступают в центр экологического мониторинга для окончательной обработки с целью формирования общей базы данных, предоставления отчетов в табличном и графическом виде. Программные обеспечения всех звеньев системы совместимы между собой, что обеспечивает бесперебойную работу и позволяет наращивать состав технических средств без ограничения.

Еще одним направлением применения систем комплексной безопасности является разработка систем мониторинга текущего состояния транспорта с возможностью прогноза. В настоящее время практикуется оценка фактического состояния транспорта в ходе технического осмотра и обслуживания. Однако, в зависимости от условий и стиля эксплуатации транспорта, износ деталей и механизмов изменяется в широком диапазоне, а значит и сроки технического обслуживания также могут различаться в каждом конкретном случае. Замена узлов и деталей проводится, в этом случае, не по наработке, а по фактическому состоянию [3]. Определение фактического состояния транспортного средства, и, что более важно, прогноз его состояния на какой-либо интервал является актуальной задачей.

Так, например, широчайшее внедрение компьютеризации в транспортную отрасль требует принципиального изменения не только технологии производства и технического обслуживания, но и предоставляет неограниченные возможности управления самим транспортным средством, создаёт инновационное пространство для внедрения сервисной культуры обслуживания автомобилей на новом уровне.

Если говорить о современных автомобилях, то они оснащены системами самодиагностики, которые информируют водителя о появлении некоторых неисправностей (пример — индикатор Check Engine). В случае возникновения некоторых неисправностей во время движения индикатор загорается, при однократной мелкой неисправности — гаснет (сохранив ошибку в памяти для последующего считывания), если он продолжает гореть, требуется — более глубокая диагностика и ремонт.

Автомобиль — это набор сложных устройств и агрегатов и его состояние зависит от огромного числа параметров и возможных взаимовлияний их друг на друга. Таким образом, даже незначительная на первый взгляд неисправность может вызвать целую комбинацию кодов, но в то же время ни один из них не даст ответа на вопрос о том, что же в действительности сломалось. Следовательно, для установления точного диагноза требуется диагностическое оборудование и соответствующая инженерная квалификация специалистов, а также наличие довольно длительного периода времени.

Основным недостатком существующих систем автомобильного мониторинга является отсутствие прогноза развития ситуации с состоянием автомобиля, сложность интерпретации водителем фиксированных буквенно-кодовых сообщений о неисправности, кроме небольшого набора символов (перегрев охлаждающей жидкости, давления масла и т. п.), невозможность приема обоснованного решения о возможности продолжать или прекратить движение с данной неисправностью. Система не способна помочь водителю при выходе из строя каких-либо устройств и агрегатов автомобиля на дороге, особенно, вне населенных пунктов или в ночное время.

Кроме того, любая неисправность автомобиля на дороге может привести к серьезным дорожно-транспортным происшествиям, которые вполне можно было бы предотвратить при оперативном информировании водителя о реальном состоянии автомобиля. Особенно это важно для автомобильного транспорта специальных служб.

Система комплексного мониторинга состояния автомобиля реализует способ комплексного мониторинга состояния любых автомобильных систем, узлов и агрегатов, включающих распределенные в пространстве разнородные по сущности и информационной размерности элементы контроля. Мониторинг проводится вслед за запуском двигателя и до начала движения выполняет проверку состояния автомобиля. Результаты мониторинга выводятся на экран бортового компьютера в виде диаграммы (рис. 7) и таблицы 1.

C:\Users\Maikk-PC\Desktop\Рисунок1.png

Рис. 7. Результаты мониторинга в виде диаграммы

Таким образом, водитель перед началом движения автомобиля получает возможность узнать прогноз о наиболее вероятном пробеге по фактическому состоянию.

При наступлении критических ситуаций во время движения водитель получает информацию о необходимых действиях, а сервис-центр — информацию о неисправности автомобиля (таблица 2).

Таблица 1

Результаты мониторинга ввиде таблице

Протокол результатов мониторинга 07.04.2016г. 10.00

пп

Узел (агрегат)

Фактическое состояние

Отклонение от расчетных значений

Прогноз

1.

Тормозные колодки (передние)

Износ 30 %

5 %

8000 км

2.

Тормозные колодки (задние)

Износ 50 %

7 %

8000 км

3.

Уровень масла в двигателе

3,5 л

3 %

12000 км

4.

Уровень масла в КП

1,2 л

2 %

15000 км

5.

Уровень охлаждающей жидкости

5,5 л

5 %

15000 км

6.

Состояние АКБ

12,2 В

2 %

11000 км

7.

Рулевое управление

8.

Фильтр питания

9.

Масляный фильтр

10.

Воздушный фильтр

11.

Износ подшипников ступицы (передняя подвеска)

12.

Износ подшипников ступицы (задняя подвеска)

Таблица 2

Критические события

Критические события

1

Внимание: Вода в картере двигателя

3 %

50 мл/мин

Через 10км прекратить движение выключить двигатель!

Для обнаружения такого критического события и прогноза развития ситуации также используется инновационный сенсор, проводимость которого изменяется в соответствии с увеличением объема воды в трансмиссионном масле.

Основные технические эффекты, ожидаемые при внедрении системы комплексного мониторинга технического состояния автомобиля:

‒ обеспечивается комплексная оценка соответствия установленным нормам состояния и динамики характеристик узлов и агрегатов автомобиля по результатам различных видов мониторинга в масштабе времени, близком к реальному, с возможностью расчета пробега до достижения терминального состояния узлов, агрегатов, исполнительных устройств и других компонентов автомобиля;

‒ обеспечивается повышение точности распознавания вида фактического состояния автомобиля, определения причин и моментов перехода в терминальные состояния его узлов и агрегатов;

‒ уменьшается время анализа и уяснения данных о состоянии узлов и агрегатов и минимизируется влияние человеческого фактора на достоверность информации представляемой в процессе формирования результатов мониторинга;

‒ обеспечивается создание единой информационно-методической платформы для обеспечения оперативного семантического сопряжения существующих и перспективных информационно-управляющих, диагностических систем различной брендовой принадлежности автомобилей;

‒ обеспечивается унификация формирования и компактность представления результатов оценки состояния автомобилей по всем видам мониторинга, независимо от типов автомобилей, количества, физической сущности, единиц измерения их параметров и ведомственной принадлежности автотранспортных средств с целью передачи результатов мониторинга в сервисный центр;

‒ снижается уровень требований по пропускной способности к разрабатываемым средствам информационного обмена и уменьшается загрузка используемых (арендуемых) линий связи для передачи данных о состоянии контролируемых объектов и команд управления.

Основные экономические эффекты, ожидаемые при внедрении системы комплексного мониторинга технического состояния автомобиля:

‒ возможность создания центров удалённого мониторинга технического состояния автомобилей, находящихся на гарантийном или абонентском обслуживании центров продаж автотранспорта, для информирования владельцев автомобилей текущей информацией о состоянии и износе узлов, агрегатов, исполнительных устройств и других компонентов автомобиля с целью производства своевременного технического обслуживания или замены;

‒ снижение аварийности и стоимости сервисного (гарантийного, постгарантийного) обслуживания автомобилей, за счёт возможности дистанционного определения характера неисправности автомобиля клиента и предупреждения водителя о возможном наступлении неисправности в режиме времени, близком к реальному в виде СМС информирования;

‒ снижение стоимости сервисного (гарантийного, постгарантийного) обслуживания автомобилей, за счёт оперативности принятия решения о характере неисправности и мерах по ее устранению: доставки конкретных запчастей и оборудования для производства ремонтных работ на месте или выбора транспорта достаточной мощности для осуществления эвакуации автомобиля к месту ремонта с доставкой туда запчастей и оборудования;

‒ наличие навигационного приёмника позволит снизить время на определение местонахождения неисправных автомобилей, с целью определения оптимальных путей доставки конкретных запчастей и оборудования для производства ремонтных работ на месте или для осуществления эвакуации автомобиля к месту ремонта;

‒ существенное сокращение временных затрат и финансовых ресурсов при развертывании корпоративных, ведомственных систем комплексного мониторинга технического состояния автотранспортных средств, особенно оперативных, специальных и диспетчерских служб.

Для передачи информации о состоянии объекта мониторинга разработана система безызбыточного помехоустойчивого кодирования [4].

Представление числа в системе безызбыточного помехоустойчивого кодирования основано на понятии вычета и китайской теоремы об остатках. Система остаточных классов определяется набором взаимно простых модулей. Для кодирования информации, необходимо числовую последовательность разделить на эти модули. Полученный результат и будет являться образом — остатком. Информацию в таком виде можно передавать по каналу связи, т. к. в случае перехвата информации злоумышленником, он не сможет ее восстановить, не зная ключевые параметры.

Взаимно простые модули являются ключом для обратного преобразования. Возможны несколько вариантов обратного преобразования в зависимости от условий. Ниже рассмотрим алгоритм кодирования и преобразования на примере.

Примеры преобразования измерительной информации осуществляются согласно приведенным ниже алгоритмам.

Алгоритм кодирования

Формализованная запись преобразования:

(1)

Для представления 8 Бит информации оптимальными модулями сравнения

(2)

Алгоритм восстановления

Для случая

(3)

наиболее прост. Вычисляется разность

(4)

  1. Если , то

(5)

Выполнение второго равенства является свидетельством того, что восстановление выполнено правильно.

  1. Если , то

(6)

Алгоритм восстановления для случая

(7)

приведен в виде трехзвенной формулы:

(8)

Литература:

  1. Дюндиков Е. Т., Белов А. Н., Чепелев А. В. Метод адаптации функциональных возможностей средств мониторинга технического состояния объектов нефтегазового комплекса // Научно-технический вестник ОАО РОСНЕФТЬ, 1–2015, выпуск № 38 (Патент на изобретение № 2574083).
  2. Munk, Benedikt A (2000). Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons. pp. 315–317. ISBN 0–471–37047–9.
  3. Жуковский Ю. Л., Котелева Н. И. Разработка структуры модуля контроля технического состояния, диагностики и оценки остаточного ресурса электромеханического оборудования комплексной интегрированной информационно-аналитической системы // Современные научные исследования и инновации, 2015, № 5 (49)
  4. Кукушкин С. С., Скиба Н. П. Основополагающие научно-методические подходы к повышению эффективности систем передачи информации на основе формирования сжатых структурно-кодовых конструкций // Двойные технологии, 2014, № 3.
  5. Трубиенко О. В. и др Модульная система интеллектуального комплексного мониторинга динамических объектов. //Сборник МИРЭА в рамках гранта на конференции “Умная Граница”

Обсуждение

Социальные комментарии Cackle