Библиографическое описание:

Абакумова В. Ю. Применение ГИС для изучения взаимосвязи рельефа и речной сети на примере бассейна малой реки (Забайкальский край) // Молодой ученый. — 2016. — №22. — С. 119-124.



Рациональное использование водных ресурсов невозможно без знаний об их количественных, качественных, режимных характеристиках, параметрах самоочищения и возобновления. Количественная составляющая поверхностных водных ресурсов, главным образом, зависит от климатических и гидрогеологических факторов. На процессы преобразования (во времени и пространстве) выпавших осадков и разгрузки глубоких подземных вод, влияют также геологические, геоморфологические и ландшафтные условия. Бассейн реки представляет собой пространственное сочетание зон питания, транзита и разгрузки, которым присущи временные трансформации. По густоте и строению речной сети можно судить о пространственной структуре бассейна и временных изменениях условий формирования речного стока. Разработка методов оценки водных ресурсов неизученных территорий при ограничении или отсутствии данных о речном стоке и его режимных характеристиках — актуальная задача гидрологии. Для ее решения используются цифровые модели рельефа (ЦМР) и геоинформационные системы (ГИС).

Моделирование стекания воды по поверхности применяется при изучении различных процессов: гидрологических, эрозионных, почвообразования, миграции и накопления веществ. В данной работе с его помощью исследовалась взаимосвязь рельефа и речной сети. Для этого на основе ЦМР бассейна в бесплатной ГИС-программе Terrain Analysis System (TAS) GIS вычерчивалась речная сеть с использованием алгоритма ADRA (Adjustable Dispersion Routing Algorithm). Этот алгоритм вычисляет направление стока и водосборные площади в зависимости от положения истоков, которые он определяет по виду переходной функции и её пределов, заданным пользователем. Вид функции (линейная или сигмоидная) влияет на способ увеличения слияния потоков воды от водоразделов к истокам. Пределы функции (верхний и нижний) определяют интервал изменения характера движения воды: от рассредоточенного по поверхности к полностью сходящемуся к истоку реки. От нижнего предела зависит расположение истоков водотоков первого порядка. Он равен произведению водосборной площади на квадрат уклона и обозначается как С [1]. Таким образом, ADRA учитывает не только размер водосбора, но и скорость стекания воды (за счет уклона), что влияет на просачивание воды в подземные горизонты, испарение, заболачивание и другие процессы, задерживающие стекание.

Подчеркнем, что ADRA учитывает только форму поверхности, т. е. предполагаются равномерные осадки по всему бассейну, стекающие ламинарными поверхностными и неглубокими подповерхностными потоками. Вне поля зрения остаются количество осадков и их режим, свойства подстилающей поверхности, водообмен с грунтовыми и более глубокими подземными водами, влияние растительности и др. Задавая параметр С, можно учесть эти условия, но конкретная его величина зависит от комплекса природных условий (климатических, ландшафтных, гидрогеологических, криологических и др.). Приближенно его можно вычислить по полевым данным о проницаемости почвы и грунтов, атмосферных осадках, испарении, и др. При их отсутствии часто применяется последовательный подбор и сравнение по различным критериям (густота, мощность, фрактальный размер и др.) получившейся речной сети с известными данными из карт, аэро- и космоснимков, полевых наблюдений. Результаты можно переносить на неизученные бассейны со сходными условиями. В то же время, сравнение реальной речной сети и теоретической, полученной при разных значениях С, показывает условия, влияющие на речную сеть. Соотношение временных (пересыхающих) и постоянных водотоков, и их расположение, характеризует режим рек. Временные водотоки обусловлены поверхностным стеканием и обильными сезонными осадками, постоянные — грунтовым стоком, или другими дополнительными источниками питания. Таким образом, можно анализировать речную сеть при разном увлажнении. В данной работе речная сеть, полученная в TAS GIS, сравнивалась с речной сетью из топокарт масштаба 1:100000 [2].

Объект исследования — бассейн малой реки Карповки (площадь 123 км2), притока реки Чита (Забайкальский край). Бассейн расположен в Читино-Ингодинской впадине с широким выровненным днищем и средневысотными водораздельными пространствами, расчлененными густой сетью водотоков. Климат региона — резко континентальный, засушливый, холодный, со среднегодовой температурой воздуха около -2,7 оС, островным распространением многолетней мерзлоты. Для Забайкалья характерны такие гидрологические явления, как редукция стока в степях, быстрое стекание воды со скал и просачивание вглубь осыпей, испарение снега, задерживание и охлаждение влаги, с последующим постепенным таянием, в пределах многолетней мерзлоты, испарение и конденсация водяных паров в курумах и каменных осыпях [3].

ЦМР бассейна была построена по общедоступным данным SRTM (http://srtm.csi.cgiar.org). Исходный размер ячейки — 3 угловые секунды, после пересчета координат в систему UTM — около 70 м. Общие характеристики бассейна в таблице 1.

Таблица 1

Основные характеристики бассейна р. Карповка

Абсолютная высота, м

Доля площади,%

Уклон, градусы

Доля площади,%

Экспозиция склона

Доля площади,%

650–700

11

0–2

17

С

14

700–750

12

2–4

17

СВ

8

750–800

8

4–8

34

В

4

800–850

10

8–15

27

ЮВ

6

850–900

11

15–35

5

Ю

13

900–950

13

более 35

0

ЮЗ

19

950–1000

14

З

17

1000–1050

5,3

СЗ

18

1050–1300

17

нет (угол менее 1о)

1

Треть бассейна — это плоские и очень пологие поверхности, треть — пологие, треть — средние и крутые. Первые характерны для устьевой части бассейна, находящейся в пределах выровненного днища долины р. Чита и для долины р. Карповки, вторые — для вершин водоразделов и подошв склонов, остальные — для склонов водоразделов. Можно допустить, что одинаковое количество атмосферных осадков выпадает на всей территории бассейна, но перераспределение их и превращение в речной сток существенно различается, большую роль в этих процессах играют высота, уклон, экспозиция. Значительную часть бассейна занимают водораздельные пространства, где снег тает позже, по сравнению с долиной, где снеговой покров быстро сдувается или испаряется. Широкие и пологие вершины водоразделов в верхней части бассейна способствуют просачиванию влаги в подземные горизонты, препятствуют быстрому стеканию осадков, увеличивают водосборную площадь водотоков. В средней части бассейна вершины водораздельных хребтов не такие широкие, а их склоны имеют наибольшие уклоны. Южные склоны (около 26 % бассейна, нижняя часть бассейна, крутые склоны) теплее, прогревание и оттаивание почвы здесь происходит быстрее, испарение больше, в отличие от северных (около 28 %, верховья бассейна, водоразделы).

Речная сеть из топокарт сопоставлялась с полученной в программе TAS GIS с применением сигмоидного алгоритма при значениях параметра С: 100, 200, 300, 400, 500 [2]. Учитывались постоянные водотоки, (сплошная линия на карте), соответствующие периоду межени, и временные водотоки (пунктирная линия), соответствующие среднемноголетнему многоводному периоду. При увеличении параметра С, уменьшается количество водотоков первого порядка, их средний уклон, увеличивается их средняя длина и площадь водосбора, и, значит, тем хуже условия для стока, например, меньше выпадает осадков, происходит пополнение грунтовых вод или заболачивание (рис. 1)

Рис. 1. Бассейн р. Карповка и водотоки: а — водотоки, истоки которых определяются программой TAS GIS при значении параметра С: 1–100 и менее, 2–200, 3–300, 4–400, 5–500 и более; б — водотоки из топокарты масштаба 1:100000; в — бассейн и водотоки совмещенные с теневой отмывкой рельефа

Для выявления особенностей годового режима реки и влияния на него осадков, анализировались совместно суточные осадки и расходы реки за 2006 год по данным Забайкальского межрегионального территориального управления Федеральной службы по гидрометеорологии и мониторингу окружающей среды. С ноября по апрель река перемерзает, при наступлении устойчивых положительных температур воздуха (конец апреля — начало мая) расход воды увеличивается. Весенний сток складывается из осадков, запасов влаги в снеге, воды от таяния речного льда и наледей. Вклад первых двух намного меньше. Снеговые осадки составляют менее 15 % годовой суммы, а к началу тёплого периода запас влаги в снеге не превышает 10 %, так как весной из-за солнечной радиации и ветров снег испаряется без таяния или сразу же после таяния [4]. Для весенних расходов характерны быстрые подъемы и спады, на гидрографе имеются высокие пики. Это вызывается разновременным таянием речного льда и наледей с запада на восток, при увеличении высоты местности и уменьшении температуры воздуха, медленным оттаиванием почвы, отсутствием просачивания в неё влаги, охлаждающим влиянием многолетней мерзлоты. Летом происходит наибольшее расходование влаги на испарение, транспирацию, пополнение грунтовых и более глубоких вод. Средние расходы с июля по сентябрь не отличаются существенно, рост расходов связан с ливневыми или многодневными дождевыми осадками. В этот период на увеличение расходов более влияет сумма осадков за 15–20 суток, чем суточные осадки, при условии, что они составляют менее 17 мм/сут. С конца октября расходы воды уменьшаются и к середине ноября полностью прекращаются.

Речная сеть неравномерна по территории: все постоянные водотоки первого порядка находятся в верховьях бассейна, причем, на севере их почти нет. В средней и нижней части бассейна (с небольшими озерами и заболоченностью), расположенной в долине р. Читы, есть только один временный водоток второго порядка. Густота речной сети небольшая, с учетом только постоянных водотоков она равна 0,37 км/км2, с временными водотоками — 0,51 км/км2. Велика доля временных водотоков: суммарная их длина равна около 27 % от всей длины речной сети. Пересыхающие истоки есть у всех водотоков, кроме одного, ряд водотоков полностью временные. Значит, они не обеспечены устойчивым питанием, а речной сток имеет большие годовые колебания.

Рассмотрим пространственное распределение величины С, при которой водотоки первого порядка обозначены на карте (рис. 1). Для большинства постоянных водотоков С=200–300, для одного С=400. Водотоки с С=200, кроме одного, стекают с главного водораздела р. Чита. У водотоков, стекающих с внутренних водоразделов, С=300–400. В средней части бассейна при С=500 TAS GIS рисует всего три водотока, из которых двух нет совсем, один водоток полностью временный. Территориальные различия обусловлены уклоном поверхности и рельефом элементарных бассейнов. С уклоном связана и растительность и распространение наледей. По преобладающей растительности и уклону были выделены четыре группы поверхности: 1 — слабо наклонные участки с травянистой растительностью (уклон менее 4 градусов), 2 — пологие участки с травянистой и редкой древесной растительностью (уклон 4–8 градусов), 3 — средние с древесной растительностью (с преобладанием сосны), 4 — крутые скалистые участки с разреженной древесной растительностью (уклон более 15 градусов). Наледи располагаются в долине реки, в местах слияния водотоков, в истоках водотоков, т. е. на участках с небольшим уклоном. Наличие наледей в бассейнах временных водотоков, говорит, что они не могут обеспечить постоянный сток рек, а только перераспределяют его. Форма водосборной площади также влияет на величину С и формирование речного стока, особенно, на характер паводков. Фактор формы бассейна Rf (form factor) — это отношение площади бассейна к квадрату его длины, чем ближе он к 0, тем бассейн длиннее [5]. Чем больше фактор формы, тем выше пики паводков и короче их период [5]. Важна расчлененность рельефа и врез речной и дренажной сети, которые оцениваются по распределению уклонов и максимальному перепаду высот (табл. 2).

Таблица 2

Параметры водотоков первого порядка бассейна р. Карповка

водотока

Водосборная площадь истока, тыс. м2

С

Длина временных участков, км

Индекс поверхности

Площадь наледей, тыс. м2

Максимальный перепад высот, м

Rf

1

7143

200

2,1

2

5,2

201

0,85

2

3677

200

0,6

2,2

-

291

0,92

3

2863

300

1

2,7

1,1

299

1,46

4

1660

300

0,9

2,9

-

255

0,98

5

3615

400

2,9

3,3

9,7

289

0,6

6

1256

200

1,2

2,9

-

227

0,4

7

1504

300

0,4

3

-

276

1,1

8

1202

200

0,3

2,2

3,4

210

0,64

9

862

300

0,5

2,5

0,2

179

0,7

10

830

300

0,5

2,5

-

134

0,83

11

1359

300

0

3

-

203

1,36

Примечание. Водосборная площадь вычислена по методу D8 (single flow direction 8). Индекс поверхности определялся по соотношению площадей с разными группами в водосборе, также были учтены вырубки, гари, земли сельхозназначения и др. Расположение и размер наледей определены по доступным космоснимкам Google Earth.

Так как показатель С складывается из множества взаимосвязанных факторов, одна и та же величина С получается при взаимодействии разных факторов. Из четырех водотоков с С=200, три находятся в сходных условиях с небольшими уклонами, древесной растительностью, короткими пересыхающими участками, в этих бассейнах происходит пополнение грунтового стока, что подтверждает наличие наледей. Здесь наиболее благоприятные условия для водотоков и устойчивого стока в течение года. Короткий водоток № 6 можно весь считать временным, судя по всем показателям. В водосборах водотоков с С=300 преобладает поверхностный сток, здесь более крутые склоны, больше доля временных участков и неравномерность годового стока. В средней части бассейна большие уклоны, каменистые осыпи, участки скал, не покрытые растительностью, способствуют быстрому стеканию атмосферных осадков, особенно ливневых. Еще менее благоприятные условия в нижней части бассейна с самыми плоскими участками, где велико испарение.

Зная условия трансформации осадков в речной сток, распределим по территории модуль годового стока, его внутригодовые изменения, и связанное с ними соотношение поверхностной и подземной составляющих стока. Модуль стока бассейна за 2006 год равен 2,02 л/с*км2, среднее между степью, пойменным лугом и лиственнично-сосновым лесом [6], его основными видами растительности. Допустив, что осадки и испарение одинаковы для всего бассейна и пропорциональны водосборной площади, выделим территории с различным типом взаимодействия поверхностного и грунтового стока. Для этого учитываем параметр С, расположение и длину пересыхающих участков, расположение и размер наледей, состояние поверхности. Места формирования стока паводков определены при С=100, что соответствует выпадению ливневых дождевых осадков, быстро стекающих по поверхности, без просачивания в почву. Обычно для водотоков первого порядка подземная составляющая речного стока мала из-за небольшого вреза русла. В их бассейнах в зависимости от условий формируется грунтовый и поверхностный сток. Чем ближе к устью, тем больше разгрузка грунтового стока в речную сеть, и меньше модуль поверхностного стока, в межень происходит редукция стока. Появляется влияние р. Чита и вышележащей территории ее бассейна, заключающееся в разгрузке в речную сеть грунтового стока в межень и пополнении его при половодьях, а также в подпитке аллювиальными водами, приуроченными к террасам р. Чита (рис. 2).

Рис. 2. Территориальные особенности стока бассейна р. Карповка: 1 — преимущественно поверхностный сток на вершинах склонов, не формирующий водотоки из-за малой водосборной площади, ниже по склонам переходит в грунтовый сток, годовой модуль стока (за 2006 год) М=3,5–4 л/с*км2; 2 — преимущественно поверхностный сток, формирует расходы половодий и паводков, быстро стекает в речную сеть, частично переходя в грунтовый сток, М=2,5–3 л/с*км2; 3 — преимущественно испарение, при осадках — пополнение грунтовых вод и незначительный поверхностный сток, М=1–1,5 л/с*км2; 4 — формирование грунтового стока, обеспечивающего меженный сток, 4а — зона поверхностного стока при обильных осадках, М=3,5–4 л/с*км2; 5 — испарение и формирование грунтового стока, не влияющего значительно на речной сток, при обильных осадках увеличивается грунтовый сток и локально поверхностный сток, М=1–1,5 л/с*км2; 6 — разгрузка грунтового стока, расходы реки обеспечены поверхностным и неглубоким грунтовым стоком, при половодьях происходит пополнение грунтовых вод, М=2,5–2 л/с*км2; 7 — разгрузка грунтового стока, расходы обеспечены поверхностным и грунтовым стоком, влияние р. Чита и вышележащей территории ее бассейна, М=2 л/с*км2

Итак, бассейн был поделен на зоны с различными условиями для формирования речной сети, для чего предложен и апробирован метод сравнения речной сети, полученной в программе TAS GIS на основе ЦМР, с речной сетью, выделенной из топографических карт. Метод основан на связи геоморфологического строения с данными условиями, а также роли рельефа в процессах формирования речной сети и речного стока.

Литература:

  1. Lindsay J. B. A physically based model for calculating contributing area on hillslopes and along valley bottoms // Water Resources Research. 2003. Vol. 39. Рp. 1332–1338
  2. Абакумова В. Ю. Исследование пространственной структуры условий формирования речной сети // Метеорология и гидрология № 8–2013 — С. 88–100.
  3. Напрасников А. Т., Сизиков А. И. Физикогеографические закономерности формирования поверхностного стока горных ландшафтов (на примере Забайкалья) // Вопросы гидрологии Забайкалья. Записки Заб. фил. ГО СССР. Вып. 85. Чита: Изд-во Заб. фил. ГО СССР, 1972. С. 3–16
  4. Осокин И. М. География снежного покрова востока Забайкалья. Записки Заб. фил. ГО СССР. Вып. 33. Чита: Изд-воЗаб. фил. ГОСССР, 1969. 192 с.
  5. Geena G. B., Ballukraya P. N. Morphometric analysis of Korattalaiyar River basin, Tamil Nadu, India: A GIS approach // International journal of geomatics and geosciences. 2011. Vol. 2. No 2. Pp. 383–391
  6. Ландшафтная гидрология: теория и практика исследований / отв. ред. Антипов А. Н. и др. Новосибирск: Гео, 2007. 262 с.

Обсуждение

Социальные комментарии Cackle