Библиографическое описание:

Меражова Ш. Б., Маматова Н. Х. Априорная оценка для решения первой краевой задачи для уравнения смешанного типа // Молодой ученый. — 2016. — №12. — С. 42-43.



В области рассмотрим следующее уравнение:

(1)

через мы обозначим линейный, дифференциальный оператор с частными производными второго порядка:

.

Здесь , , , , — заданные функции, которые удовлетворяют следующим условиям:

1) и .

2) и .

3) .

4) .

— пространство непрерывных функций, — замыкание . Область разделим на три части:

Здесь ,

,

- граница области .

— внутренняя нормаль, проведенной к .

Определим, к какому типу принадлежит (1) уравнение в области . Так как

,

где , . Отсюда .

По классификации уравнений частного производного второго порядка уравнения (1) принадлежит к уравнениям смешанного типа в области , т. е.

A) Если , то .

Если , , то .

Отсюда, в области уравнение (1) параболического типа.

B) В области , тогда уравнение (1) гиперболического типа.

C) В области , тогда уравнение (1) эллиптического типа.

Для уравнения (1) изучаем следующую краевую задачу:

Краевая задача: Найти функцию , удовлетворяющую в области уравнению (1), а при граничному условию:

,(2)

пространство функций, принадлежащих в класс и удовлетворяющих условие (2).

Через и мы обозначим объединение следующих норм в пространстве :

.

Лемма. Пусть существуют такие постоянные , и , что для коэффициентов (1) уравнения выполнялись следующие неравенства:

,

Тогда найдутся постоянные такие, что для выполняется следующее неравенство:

.(3).

Для решения краевой задачи (1) — (2), мы используем приближенной (численный) метод (метод разностных схем). Для доказательства устойчивости разностной модели, мы используем априорную оценку (3).

В этой статье рассматривается краевая задача для уравнения смешанного типа и приводится лемма для решения задачи, которая далее используется для доказательства устойчивости разностной модели, построенной для этой краевой задачи.

Литература:

  1. Алаев Р. Д. Метод диссипативных интегралов энергии для разностных схем. Новосибирск 1983г.
  2. Бицадзе А. В. Уравнения смешанного типа. –М.Изд-во АН СССР, 1959.-164с.
  3. Врагов В. Н. Краевые задачи для неклассических уравнений математической физики. — Новосибирск: НГУ, 1983–84с.
  4. Рахмонов Х. О. О первой краевой задаче для одного уравнения смешанного типа в пространстве. — Новосибирск, 1985.-22с. — (препринт. АН СССР. Сиб. Отд-ние. Ин-т математики; № 12
  5. Алоев Р. Д., Рахмонов Х. О., Шарипова Ш. Исследование разностной модели краевой задачи для уравнения смешанного типа. «Оптимизация численных методов» Тезисы докладов международной научной конференции «Оптимизация численных методов», посвященной 90-летию со дня рождения С. Л. Соболев. Уфа ИМВЦ УНЦ РАН 1998г, 4–5-с.
  6. Меражова Ш. Численное решения первой и второй краевой задачи для уравнения смешанно-составного типа. Материалы конференции, посвященные юбилею В. И. Романовского, Ташкент, 2004, 81–84-с.

Обсуждение

Социальные комментарии Cackle