Библиографическое описание:

Селихов Ю. Р., Юрсков С. В., Шуклин А. В., Хамуш А. Л., Газаров Д. А. Методы моделирования случайных процессов // Молодой ученый. — 2016. — №11. — С. 467-471.

 

В данной статье рассмотрены методы статистического моделирования применительно к моделированию на ЭВМ случайных процессов, имитирующих непрерывные случайные функции с заданными вероятностными характеристиками.

Ключевые слова: статистическое моделирование, случайные величины, стохастические процессы.

 

Существуют два типа алгоритмов, при помощи которых на ЭВМ могут вырабатываться дискретные реализации случайного процесса U(t). Алгоритмы первого типа предусматривают вычисление дискретной последовательности значений , т. е. значений реализаций процесса U(t) в совокупности заранее выбранных моментов времени . Шаг дискретизации обычно принимается постоянным: ∆t = const, тогда из стационарности процесса U(t) следует стационарность последовательности {}.

В основе алгоритмов этого типа положено линейное преобразование стационарной последовательности независимых гауссовских чисел ζ с параметрами <ζ> = 0, < > = 1 в последовательность {} коррелированную по заданному закону

(1)

где K(τ) корреляционная функция моделируемого процесса. При этом оператор соответствующего линейного преобразования записывается или в виде скользящего суммирования с весом

или в виде рекуррентного уравнения типа

Вид корреляционной функции воспроизводимого при помощи соотношений (2), (3) случайного процесса определяет набор значений коэффициентов .

Ко второму типу относятся алгоритмы, основанные на представлении моделируемых процессов в виде разложений

где некоторая система детерминистических функций; U случайный вектор. При этом моделирование случайного процесса сводится к воспроизведению реализаций векторов U и последующему вычислению значений Um = U(tm) по формуле (4).

Целью статистического моделирования случайных полей является воспроизведение совокупности реализаций значений поля U(x) в дискретных точках [x = (), n=1,…,N]. В дальнейшем не будем делать формального различия между пространственными координатами и временем и ограничимся случаем однородных случайных полей. Алгоритмы моделирования случайных полей, как правило, являются обобщением соответствующих алгоритмов моделирования случайных процессов на случай m переменных.

Моделирование гауссовского белого шума.

При статистическом моделировании случайных процессов и полей возникает необходимость в моделировании стационарного дельта-коррелированного гауссовского процесса ζ(t) (белого шума интенсивности s) или его многомерного аналога ζ(x). На ЭВМ можно воспроизводить только усеченный белый шум ζ(f) с конечной дисперсией. Параметр при моделировании подбирается таким образом, чтобы последовательность ζm = ζ(m∆t) была некоррелированной. Это условие будет выполняться, если выбрать ∆t где ∆t шаг дискретизации. Моделирующий алгоритм при этом имеет вид [1]:

Метод скользящего суммирования для моделирования случайных процессов.

Алгоритм (2) позволяет воспроизводить на ЭВМ последовательности {Um} сколь угодно большой длины, которые с самого начала обладают свойством стационарности. Весовые коэффициенты могут быть вычислены различными способами. Эффективным является способ, основанный на разложении в ряд Фурье спектральной плотности моделируемого процесса. Преобразование (2) при этом берется в виде

а коэффициенты

Шаг дискретизации ∆t и число членов ряда P выбираются из условия

где ε — допустимая погрешность;

Моделирование стационарных случайных процессов с дробно-рациональной спектральной плотностью.

Для моделирования случайных процессов с дробно-рациональной спектральной плотностью вида

где B(i) и С(i) полиномы относительно (i) порядка r и p соответственно (r < p) эффективным является алгоритм типа (3). Спектральная плотность последовательности

может быть приведена к виду

Где

Коэффициенты используются в рекуррентных уравнениях (3). Соотношения (3) позволяют получать дискретные реализации случайных процессов сколь угодно большой длины. Начальные условия в (3) при вычислении первых значений последовательности {Um} можно выбрать произвольными (например, нулевыми). Вследствие этого возникает переходный процесс, в пределах которого начальный участок вырабатываемой реализации будет искажен. Величина этого участка реализации зависит от корреляционных свойств моделируемого процесса [2].

Моделирование случайных процессов с использованием канонического разложения.

Для стационарных гауссовских случайных процессов справедливо разложение:

где U(ω) и V(ω) — независимые и стохастически ортогональные случайные функции. Принимая, что S(ω) = 0 при |ω| > и заменяя интеграл конечной суммой, получим:

Здесь гауссовские случайные величины со следующими вероятностными характеристиками:

Число членов ряда (14) выбирается из условия

Наряду с (14) можно использовать разложение

Здесь случайные величины с совместной плотностью вероятности

.

Реализации, получаемые при помощи выражений (14), (15), являются периодическими (T = 2π/∆ω) следовательно, свойством эргодичности не обладают. Общее достоинство разложений (14) и (15) — простота алгоритма моделирования, а недостаток — необходимость учитывать большое число членов ряда.

Разложения (14) и (15) удобно использовать для получения дискретных реализаций случайных процессов в неравноотстоящих точках [3].

Другие методы моделирования случайных процессов.

Во многих случаях эффективным оказывается метод моделирования, основанный на использовании разложения [4]:

Здесь случайные величины с совместной плотностью вероятности

Согласно центральной предельной теореме распределение реализаций (16) при стремится к гауссовскому. Кроме того, при реализации будут асимптотически эргодическими по отношению к математическому ожиданию и корреляционной функции.

Наряду с (16) можно использовать разложение

Здесь случайные величины с совместной плотностью вероятности

Кроме того, Закон распределения величин можно принять равномерным на интервале (0,1), при этом их реализации моделируются при помощи соотношений

Здесь  — случайные числа, равномерно распределенные на интервале (0,1), которые вырабатываются на ЭВМ с помощью программных датчиков. Моделирование реализаций выполняют одним из методов моделирования случайных величин с заданным законом распределения.

Заключение

В данной статье были рассмотрены методы статистического моделирования применительно к моделированию на ЭВМ случайных процессов, заключающихся в решении задачи воспроизведения дискретных последовательностей, имитирующих непрерывные случайные функции с заданными вероятностными характеристиками.

 

Литература:

 

  1. Быков В. В. Цифровое моделирование в статистической радиотехнике. М., «Советское радио», 1971, 328с.
  2. Голенко Д. И. Моделирование и статистический анализ псевдослучайных чисел на электронных вычислительных машинах. М., «Наука», 1965. 227с.

3.       Шведов А. С. Теория вероятностей и математическая статистика. М.: Изд. дом, ГУ-ВШЭ, 2005. — 254с

  1. Shinozuka M. Simulation of multivariate and multidimensional random processes. — “Journ. Acoust. Soc. Am.”, 1971, vol. 49, N 1, p. 556–583.

Обсуждение

Социальные комментарии Cackle