Библиографическое описание:

Юсупов Ф., Шарипов М. С. Задача диагностирования технологического процесса размола зерна пшеницы в мукомольном производстве на основе нечетко-логического подхода // Молодой ученый. — 2016. — №9.5. — С. 50-54.



Любая техническая система в процессе своего целенаправлен­ного или задаваемого функционирования находится в динамике. Это означает, что ее состояние во времени претерпевает те или иные изменения. Они должны быть идентифицированы и проана­лизированы с целью недопущения невыполнения данным объектом своих функций в полном объеме. Для этого необходима органи­зация контроля и диагностирования, т. е. систематического распоз­навания текущего состояния объекта, которое может изменяться под воздействием контролируемых и чаще всего неконтролируемых причин. Вопросы организации процедур диагностирования, постро­ения моделей объектов, разработки алгоритмов и проектирования конкретных автоматизированных систем диагностирования широко освещаются в зарубежной и отечественной литературе.

При выявлении технологических нарушений большую роль иг­рает опыт операторов, их профессиональная подготовленность и интуиция. Трудности диагностирования связаны также с нали­чием различных групп нарушений, принципиально отличающихся друг от друга. Это делает практически невозможным использо­вание какой-либо единой модели, адекватно описывающей все диагностические свойства объекта в целом. Так, в большинстве систем диагностирования состояния технологических объектов ис­пользованы те или иные графовые модели объекта и логические методы анализа причин нарушений. Недостатком графового пред­ставления является невозможность исчерпывающего описания та­кой моделью всего многообразия диагнозов, принадлежащих раз­личным группам нарушений. Применение двузначной логики за­труднительно для определения не вполне удовлетворительного состояния некоторого элемента и в случаях, когда однозначно трудно оценить причинно-следственную связь явлений. Более то­го, задача диагностирования часто носит вероятностный харак­тер, но отсутствие статистической информации в достаточном объеме ограничивает возможность применения традиционных ме­тодов распознавания, основанных на использовании априорных статистических данных.

Различают прямые и косвенные диагностические параметры. Первые непосредственно характеризуют состояние объекта, а вторые связаны с основными параметрами некоторой функциональной зависимостью.

Основные трудности в решении рассматриваемой проблемы заключа­ются в следующем:

- наличие количественной, качественной и интервальной информации о значениях отдельных параметров вектора X,

- отсутствие аналитических зависимостей между вектором состояния объекта и его классом состояний, к которому он должен быть отнесен,

- большая размерность вектора параметров состояний, а также наличие ошибок измерения отдельных параметров.

Наибольшее распространение в методах технической и медицинской диагностики получили кластерный анализ, байесовский подход, методы регрессионного анализа, логические выводы на основе созданной базы знаний, метод фазовых интервалов.

Метод логического программирования удобен для построения цепоч­ки правил. Он широко применялся в экспертных системах и использовался в медицинской диагностике, позволяя в ряде случаев не только устано­вить диагноз, но и объяснить причину принятого решения.­

Основным не­достатком большинства этих методов является сложность работы с нечис­ловыми данными (лингвистические переменные, интервальные значения), а также формализация нечетких знаний, заданных на естественном языке, что не позволяет в полной мере использовать опыт эксперта и причинно-следственные связи.

Приведем постановку и математическую формулировку задачи тех­нической диагностики на основе методов Fuzzy-логиче­ского вывода.

Суть задачи диагностирования на основе нечетко-логического подхода сводится к следующему. На основе экспертного опроса специалистов определяются несколько возможных состояний объекта диагностирования (ОД), не подлежащих непосредственному измерению, но являющихся существенными в процессе эксплуатации ОД. Далее, строятся зависимости, определяющие данные состояния, путем исследования нечетких отношений между параметрами ОД, в результате чего задача диагностики сводится к определению последовательных зависимостей (укрупненных переменных), в совокупности определяющих единое состояние ОД. Основой такой формализации является композиционное правило вывода Л.Заде. Использование при решении задач диагностирования ВС эвристических методов и теории нечетких множеств позволяет включить в БЗ диагностических ЭС знания экспертов о нежелательных состояниях ОД и дает возможность формализовать параметры качественного характера и более обоснованно принимать решения. При этом повышается роль ДЭС, которая формирует квалификационные рекомендации для пользования о типе текущего состояния, вида дефектов и действиях, необходимых для их устранения [1].

Основное производство данного класса предприятий состоит из элеватора, мукомольного и комбикормового завода, на которых протекают технологические процессы переработки зерна [2].

Мукомольный завод представляет собой сложный объект управления. Наличие большого числа машин, технологических операций, сложные зависимости выходных параметров от многих входных и возникающих факторов, нестационарность процесса – существенно усложняют управление процессом на основе информации, которую технолог получает периодически из лаборатории. Управляющие воздействия, производимые вручную, практически невозможно увязать с динамикой переходных процессов. Поэтому существенную роль в управлении технологическими процессами играют стабилизирующие автоматические системы. Их настройка и выбор необходимых уставок – сложная задача. В то же самое время известно, что отдельные технологические операции имеют оптимальные параметры, и в ряде случаев их оптимумы не обеспечивают лучшего конечного результата. Наилучший эффект при управлении подобными объектами достигается при применении управляющих вычислительных комплексов, которые вместе с локальными автоматическими системами при соответствующем математическом и программном обеспечении позволяют достигать оптимальных производственных показателей [2,3].

Мукомольные заводы отличаются высокой степенью сложности технологи­ческих процессов, суть которых состоит в многократном влиянии на результаты производства значительного количества одновременно действующих факторов при большой скорости их воздействия. В этих условиях обслуживающему персоналу чрезвычайного трудно принимать правильные и своевременные решения по управлению. Протекание и уровень технологического процесса, как правило, оценивают только на завершающей стадии по количеству и качеству готовой продукции. Все это приводит к неравномерности протекания технологических процессов (их неупорядоченности) и к снижению уровня технологии в целом. Неупорядоченность в технологическом процессе реально можно снизить только на основе его стабилизации, оперативного контроля и автоматизации.

Стабилизация технологических процессов на всех этапах мукомольного производства – основа эффективного управле­ния и улучшения условий труда.

Процесс размола зерна пшеницы практически не контролируется техническими средствами измерения. Управление объектом осуществляется вручную путем изменения межвальцовых зазоров на вальцовых станках, измельчающих зерно и промежуточные продукты размола. Для контроля всего процесса используются порционные весы с периодом срабатывания в десятки секунд, а в состав контролируемых параметров размола входят показатели, получаемые в ходе лабораторного анализа. Процесс перенастройки размола на оптимальный режим может составлять несколько часов.

Из сказанного видно, что в мукомольном производстве переходные процессы довольно медленные, а автоматическое управление пока ограничивается стабилизацией физико-технологических показателей зерна, поступающего в размол. В основе системы лежит набор объектов, иерархия которых определяется порядком получения и обработки сигналов.

Поэтому в данной работе рассматривается, главным образом, "внутренней" неопределенности исходных данных, и направленных на эффективное решение задач регулирования производственных процессов производства муки.

Любая техническая система в процессе своего целенаправлен­ного или задаваемого функционирования находится в динамике, мукомольное производства не исключена.Именно в таких ситуациях необходима органи­зация контроля и диагностирования, т. е. систематического распоз­навания текущего состояния объекта, которое может изменяться под воздействием контролируемых и чаще всего неконтролируемых причин. Однако вне поля зрения разработчиков систем диагностирования долгое время оставались такие специфические объекты, как управляемые техно­логические комплексы. Диагностирование состояния технологиче­ских объектов сопряжено со значительными трудностями и имеет ряд особенностей.

Ввиду необходимости проведения диагностических процедур не­посредственно в процессе эксплуатации объекта используются ме­тоды функционального диагностирования. В отличие от систем тестового диагностирования, особенность которых состоит в воз­можности подачи на объект специально организуемых тестовых воздействий, в данном случае воздействия, поступающие на входы объекта, заданы только его рабочим алгоритмом функционирова­ния [4].

Анализ таких особенностей процесса диагностирования слож­ных объектов, как [5]: множество альтернатив интерпретации событий; необходимость совместного рассмотрения множества со­бытий; формирование алгоритмов распознавания первопричины нарушения чаще в виде набора правил, чем в виде системы урав­нений; а также необходимость использования эвристических спо­собов выделения наиболее вероятных решений и области их су­ществования, указывает на возможность повышения эффективно­сти процедур диагностики при использовании методов теории ис­кусственного интеллекта.

Процедура диагностирования технологического состояния процесса дробления зерна в мукомольном производстве представляет собой определенную последовательность ди­агностических проверок реакции объекта на управляющие и воз­мущающие воздействия. Эффективность процедур диагностирова­ния во многом предопределяется оптимальностью выбранной по­следовательности проверок — стратегии поиска диагноза в мно­жестве всех возможных причин. Для определения стратегии осуществлено последовательное разбиение множества на под­множества (, , , ..., ) [6].

Отдельные локальные наборы правил описывают различные технологические блоки комплекса и в совокупности составляют БЗ системы. Задача диагностирования при этом формулируется следующим образом.

Пусть – ряд признаков, по конкретным значениям которых принимается суждение о субъективной вероятности ди­агнозов из заранее определенного ряда диагнозов . Каждый из принимает значение из множества. В момент времениtсостояние технологического объекта описыва­ется вектором признаков [4]

,

где— реализация признакав текущий моментt.Требуется определить оценку вероятности (степень возможности) диагно­зов:

.(1)

Знак , используемый для обозначения вероятности, подчерки­вает ее субъективный характер.

Для решения поставленной выше задачи существует в основном два способа представления экспертных знаний.

Первый способ представляет собой систему правил следующе­го вида:

(2)

где— конкретное значениеиз множества, — s-eзначение оценки вероятности из множества возможных значений.

Второй возможный вид представления экспертных знаний представляет собой систему правил, описываемых при тех же обозначениях следующим образом:

(3)

Оба рассматриваемых способа представления экспертных зна­ний обладают различными свойствами. Алгоритмы обработки представленной таким образом информации также должны отли­чаться.

Наиболее удобной для эксперта формой представления зна­ний импликативного вида является наиболее привычная для че­ловека— лингвистическая. При этом эксперт оперирует размыты­ми категориями, например:

«Если значение очень большое, то вероятность — ма­лая». Поэтому к составлению модели применен лингвистический подход на базе теории нечетких множеств Л. Заде.

В соответствии с выражениями (2), (3) в общем виде могут быть записаны так:

ЕСЛИЕСТЬЕСТЬ,

ТО ЕСТЬ (4)

ЕСЛИЕСТЬТО ЕСТЬ (5)

Рассмотрим обе, так называемые «мягкие», модели. Естест­венно, что решающие правила, соответствующие им, будут раз­личными. В (5) используются правила, устанавливающие со­ответствие между всеми лингвистическими значениями каждого признака, рассматриваемого самостоятельно, и значением субъ­ективной условной вероятности каждого диагноза. Возможность такого представления экспертных знаний вытекает из четкого ста­тистического подхода. В частности, из широко используемой в си­стемах диагностирования байесовской формулы вычисления ве­роятности диагнозов [7] выводится зависимость

(6)

В формуле (6) будем считать, что признаки независимые. Очевидно, чтоявляется лингвистическим представ­лением четкого аргумента,а решающее правило вычис­ления вероятности P, реализованное в нечетком алгоритме диагностирования, эквивалентно функцииFиз (6).

Анализ реализованной в комплексе технологии показал, что можно выделить практически независимые диагностические приз­наки. Это позволило использование модели типа (5) для описа­ния зависимостей между субъективными вероятностями диагно­зов и нечеткими значениями признаков. Более того, как отмечено в [7], в большинстве практических задач можно принять до­пущение о независимости признаков БЗ.

Правила типа (5) можно представить и так:

ЕСЛИЕСТЬ., ТОс вероятностью .

В консеквент этого правила входят наименование j-го диагноза и лингвистическая оценка субъективной его вероятности при дан­ной реализации i-го признака,это может рассматривать­ся как мера истинности правилаЕСЛИ, ТО».

Заполнение диагностирования технологического состояния процесса дробления зерна в подготовительном цехе мукомольном заводе осуществлено по специально разработанной методике и оцениваются группами экспертов.

Литература:

  1. Бекмуратов Т.Ф., Джайлавов А.А. Экспертно-диагностическая система с устройством контроля цифровых блоков вычислительной системы//Журнал химическая технология, контроль и управление. – Ташкент, 2008. - №3. – С.32-39.
  2. Кулак В.Г., Максимчук Б.М. Технология производства муки.-М.:Агропроиздат,2001. - 224 с.
  3. Юсупбеков Н.Р., Алиев Р.А., Адилов Ф.Т. Гулямов Ш.,М., Аналитические информационные технологии автоматизации производственных процессов, ТашГТУ, Ташкент, 2004 –с. 157.
  4. Алиев Р.А. и др. Производственные системы с искусственным интеллектом/Р.А. Алиев, Н.М. Абдиеев, М.М. Шахназаров. – М.: Радио и связь. – 1990. – 264 С.
  5. Биргер И.А. Техническая диагностика. – М.: Машиностроение, 1978. – 240 С.
  6. Кристофидес Н. Теория графов. Алгоритмический подход: Пер. с англ. – М.: Мир, 1978. – 432 С.
  7. Кофман Ф. Введение в теорию нечетких множеств: Пер. с англ. – М.: Радио и связь, 1982. – 667 С.

Обсуждение

Социальные комментарии Cackle