Библиографическое описание:

Тожихужаева Н. З., Каримов И. Ч. Определение нагрузок в среде MathCAD // Молодой ученый. — 2016. — №4. — С. 82-84.

 

Results of power calculation of the eccentric cam mechanism in the environment of MathCAD are given in article.

 

В современных технологических машинах большое применение получили эксцентриковые кулачковые механизмы. Это вызвано, прежде веет, простотой их конструкции [1,2].

Рассмотрим кулачковый механизм эксцентрикового типа, который показан на рис.1.

Рис. 1. Схема определения нагрузок, действующих на эксцентриковый кулачковый механизм.

 

Эксцентрик представляет собой диск, вращающийся с постоянной угловой скоростью ω на оси, смешенной на величину ε (эксцентриситет) от центра. Ось толкателя проходит через ось вращения эксцентрика.

Определим реакции в кинематических парах и уравновешивающий момент механизма. Положим, что нам известны следующие параметры механизма: эксцентриситетε, угловая скорость вращения ω, радиус эксцентрика r, длины l иz отрезков BC и CDсоответственно, масса толкателя т, масса эксцентрика B-, и нагрузка P.

Искомые реакции РC и PD, реакции стойки в точках C и D соответственно. Эти реакции направлены перпендикулярно к оси толкателя. Начало координат в точке А. Реакцию во вращательной кинематической паре эксцентрик-стойка обозначим через PAсилу реакции толкателя в точке В-Р21, силу реакции, эксцентрика в точке . Реакция Р21 действует по радиусу ОВ.

Рис. 2. Схема для определений реакций: а) в шарнире эксцентрика; б) действующих на толкатель.

 

Определим инерционные нагрузки, действующие на звенья механизма. Так как эксцентрик вращается равномерно с постоянной угловой скоростью, то инерционная нагрузка определяется только силой инерции звена главным вектором инерции, приложенным в центре массы эксцентрика.

Сила инерции,

Сила инерции, действующая на толкатель,

,

где, ρ длина отрезка AB.

Определим величину . Полагая, что φ=0 при нижнем положении толкателя, т. е. при , из треугольника АОВ в соответствии с теоремой косинусов получим:

Откуда

(1)

Следовательно,

(2)

Имея в виду, что , запишем:

,

(3)

Таким образом, сила инерции толкателя:

(4)

Используя принцип Даламбера, составляем уравнения кинетостатики для каждого звена механизма в отдельности.

Звено 1-эксцентрик (рис.2,а) находится под действием сил: реакции Р21 со стороны толкателя, направленной по радиусу ОВ: реакции оси эксцентрика РА, проекции которой на оси х и у обозначаем РАx и РАy, инерционной силы Ри1. Кроме того, к эксцентрику приложен уравновешивающий момент Му.

Условие равновесия эксцентрика выражается тремя уравнениями:

(5)

(6)

(7)

Первые два уравнения означает равенство нулю сумм сил, действующих на эксцентрик соответственно по осям х и у. Третье уравнение означает равенство нулю суммы моментов действующих сил относительно оси z, проходящей через точку А перпендикулярно плоскости чертежа.

Уравнения содержат четыре неизвестных Р21, РАх, PAy, Му. Угол υсвязан с углом поворота эксцентрика соотношением:

(8)

Далее переходим к рассмотрению условий равновесия звена 2-толкателя (рис.2,б). На него действуют следующие силы: реакции направляющей толкателя Рc и Pd,действующие в точке С и точке D соответственно и направленные параллельно оси х; внешняя сила Р, направленная вдоль оси у; сила инерции Рu2, также направленная вдоль оси у; реакция эксцентрика Р12=-Р21.

Уравнения кинетостатики для звена 2 имеют вид:

(9)

(10)

(11)

Формулы для определения искомых величин получаем из уравнений:

(12)

(13)

Из уравнений (10,11) следует:

(14)

(15)

Из уравнений (5,6) получаем:

(16)

Уравнения(1,2,3,12,13,14,15,16), решались в среде MathCAD. По результатам расчетов на ЭВМ были получены закономерности изменения перемещений, скоростей, ускорений толкателя, а также реакций в кинематических парах механизма. С целью изучения влияния угловой скорости кулачка на реакции в кинематических парах исследование проводили при вариации ω с до с шагом в . В табл.1. приведены экстремальные значения Р21, Му, Рd, Рc, РА при изменении угловой скорости кулачка.

 

Таблица 1

, (с-1)

20

25

30

35

40

, (н)

91,145

90,648

90,38

91,105

94,399

, (н)

78,8

78,125

77,3

75,325

72,5

, (н·м)

2,699

2,703

2,71

2,72

2,735

, (н·м)

-2,699

-2,704

-2,71

-2,72

-2,735

, (н)

162,567

160,661

158,353

155,62

152,53

, (н)

-162,575

-160,675

-158,348

-155,638

-152,532

, (н)

206,435

204,106

201,274

197,992

194,199

, (н)

-206,428

-204,113

-201,291

-197,96

194,213

, (н)

99,992

105,354

112,543

121,68

132,932

, (н)

69,2

63,129

55,704

46,932

36,855

 

Полученные результаты позволяют произвести прочностные расчеты эксцентрика и толкателя.

 

Литература:

 

  1.                И. И. Артоболевский, Теория механизмов и машин. М.: Наука, 1988, 640 с.
  2.                А. М. Ашавский, В. Ф. Балабанов, B. C. Шейнбаум и др. Лабораторный практикум и курсовое проектирование по теории механизмов и машин с использованием ЭВМ. М.: Машиностроение, 1983. 160 с.

Обсуждение

Социальные комментарии Cackle