Библиографическое описание:

Емельянов А. А., Бесклеткин В. В., Авдеев А. С., Чернов М. В., Киряков Г. А., Габзалилов Э. Ф., Прокопьев К. В. Моделирование системы АИН ШИМ – АД с переменными в неподвижной системе координат αβ на основе апериодических звеньев // Молодой ученый. — 2016. — №1. — С. 10-22.

 

В данной работе рассматривается процесс математического моделирования асинхронного двигателя [1] при питании от трехфазного автономного инвертора напряжения с широтно-импульсной модуляцией (АИН ШИМ). Результаты этой работы будут основой для создания учебно-лабораторной установки по исследованию системы АИН ШИМ – АД. Функциональная схема системы трехфазный автономный инвертор с ШИМ – асинхронный двигатель приведен на рис. 1.

Рис. 1. Функциональная схема системы «АИН ШИМ – АД»

В этой схеме приняты следующие обозначения:

     – задающие гармонические воздействия:

(1)

     uоп – опорное напряжение, представляющее собой пилообразное, двухстороннее, симметричное напряжение с частотой модуляции значительно превышающей частоту напряжения задания. Математическая модель генератора пилообразного напряжения и его выходные сигналы даны на рис. 2, 3 и 4;

Рис. 2. Генератор пилообразного напряжения

 

Рис. 3. Выходной сигнал генератора пилообразного напряжения

 

Рис. 4. Сравнение выходного сигнала генератора с задающим гармоническим воздействием

     НОа, НОb и НОс – нуль-органы, обеспечивающие сравнение сигналов задания с опорным сигналом. Если , то выходные сигналы нуль-органов , иначе;

     Ф1а и Ф2а, Ф1bи Ф2b, Ф1с и Ф2с – формирователи сигналов управления силовыми ключами. Формирователи сигналов управления имеют взаимно инверсные релейные характеристики [2] и сепарируют сигнал нуль-органа НО по двум каналам управления ключами инвертора. Кроме того, предусматривают небольшие временные задержки включения ключей. Это необходимо для предотвращения коротких замыканий источника постоянного напряжения uп через силовые ключи инвертора;

     иии – дискретные выходные сигналы с формирователей, управляющих включением силовыми ключами;

     1А и 2А, 1В и 2В, 1С и 2С – силовые ключи, попеременно подключающие обмотки фаз двигателя к разноименным полюсам источника постоянного напряжения uп.

В каждом из состояний инвертора две фазы двигателя с помощью ключей соединены параллельно и подключены к источнику питания последовательно с третьей фазой. Поэтому напряжение источника питания распределяется между фазами нагрузки (в случае их симметрии) следующим образом: одна треть величины напряжения приходится на каждую из параллельно включенных фаз и две трети – на последовательно включенную фазу (таблица 1) [2].

Таблица 1

Номер комбинации

Состояния схемы

1

2

3

4

5

6

7

8

Включение ключей

1А 2В 2С

1А 1В 2С

2А 1В 2С

2А 1В 1С

2А 2В 1С

1А 2В 1С

1А 1В 1С

2А 2В 2С

Схема питания обмоток АД

 

Формирователи сигналов управления силовыми ключами (Ф1а и Ф2а, Ф1bи Ф2b, Ф1с и Ф2с) задают программу подключения фаз обмоток двигателя к источнику постоянного напряжения uп.

Фазное напряжение в обмотке двигателя представляет собой пятиуровневую импульсную функцию [2] со значениями:

Импульсные напряжения, подаваемые на двигатель связаны с постоянным напряжением uп и выходными сигналами нуль-органов и (рис. 5) по следующей зависимости [2]:

 

(2)

Рис. 5. Сигналы , и на выходе нуль-органов

 

Реализация импульсных напряжений в неподвижной трехфазной системе координат abcпредставлена в Simulink-Matlab на рис. 6. Результаты моделирования напряжений даны на рис. 7.

 


Рис. 6. Математическая модель реализации зависимости (2) в Matlab


Рис. 7. Выходные напряжения в неподвижной трехфазной системе координат

 

Далее эти напряжения из трехфазной системы преобразуются в импульсные двухфазные напряжения в неподвижной декартовой системе координат αβ по следующим формулам [2]:

(3)

Математическая модель этих уравнений в Simulink-Matlab дана на рис. 8.

Рис. 8. Прямое преобразование координат «abcαβ»

Выходные сигналы этого преобразователя даны на рис. 9.

Рис. 9. Напряжения на выходе прямого преобразования координат

 

Напряжения воздействуют на математическую модель асинхронного двигателя, рассмотренную в статье [1]. Статорные токи в неподвижной двухфазной системе координат αβ (рис. 10) с помощью обратного преобразователя координат трансформируется в неподвижную трехфазную систему координат .

Рис. 10. Статорные токи в неподвижной системе координат на входе обратного преобразователя координат

Обратные преобразования производятся по следующим формулам [2]:

(4)

Математическая модель обратного преобразования и результаты и даны на рис. 11, 12 и 13.

Рис. 11. Математическая модель обратного преобразования токов в неподвижной системе координат «αβ abc»

 

Рис. 12. Статорные токи и на выходе обратного преобразователя координат при частоте генератора пилообразного напряжения fоп = 1000 Гц

Рис. 13. Статорные токи и на выходе обратного преобразователя координат при частоте генератора пилообразного напряжения fоп = 4000 Гц

 

Рис. 14. Статорные токи и на выходе обратного преобразователя координат при частоте генератора пилообразного напряжения fоп = 4000 Гц и времени t= 2,5 c

Полная схема математической модели АИН ШИМ – АД дана на рис. 15.

Рис. 15. Полная схема системы АИН ШИМ - АД

 

Электромагнитный момент и скорость асинхронного двигателя при питании от АИН ШИМ представлены на рис. 16.

Рис. 16. Момент и скорость двигателя при питании от АИН ШИМ

 

Математическая модель асинхронного двигателя на основе апериодических звеньев [1] дана на рис. 17.

 


 

Рис. 17. Математическая модель асинхронного двигателя на основе апериодических звеньев


Расчет параметров асинхронного двигателя [1], [3]:

%Номинальные данные

PN=320000;

UsN=380;

IsN=324;

fN=50;

Omega0N=104.7;

OmegaN=102.83;

nN=0.944;

cos_phiN=0.92;

zp=3;

%Параметры Т-образной схемы замещения при номинальной частоте

Rs=0.0178;

Xs=0.118;

Rr=0.0194;

Xr=0.123;

Xm=4.552;

J=28;

%Базисные величины системы относительных единиц

Ub=sqrt(2)*UsN;

Ib=sqrt(2)*IsN;

OmegasN=2*pi*fN;

Omegab=OmegasN;

Omegarb=Omegab/zp;

Zb=Ub/Ib;

Psib=Ub/Omegab;

Lb=Psib/Ib;

kd=1.0084;

Mb=kd*PN/OmegaN;

Pb=Mb*Omegarb;

rs=Rs/Zb;

ls=Xs/Zb;

rr=Rr/Zb;

lr=Xr/Zb;

lm=Xm/Zb;

Tj=J*Omegarb/Mb;

betaN=(Omega0N-OmegaN)/Omega0N;

wN=(1-betaN);

SsN=3*UsN*IsN;

zetaN=SsN/Pb;

ks=lm/(lm+ls);

kr=lm/(lm+lr);

lbe=ls+lr+ls*lr*lm^(-1);

roN=0.9962;

rrk=roN*betaN;

alphar=kr*rr/lm;

le=kr*lbe;

re=rs+(kr^2)*rr;

Te=le/re;

Tr=(lm+lr)/rr;

 

Литература:

 

  1.      Емельянов А.А., Бесклеткин В.В., Авдеев А.С., Чернов М.В., Киряков Г.А., Габзалилов Э.Ф., Фуртиков К.А., Реутов А.Я., Королёв О.А., Азанов А.А. Математическая модель асинхронного двигателя с переменными в произвольной системе координат в системе Script-Simulink // Молодой ученый. - 2015. - № 17. - С. 1-10.
  2.      Шрейнер Р.Т. Электромеханические и тепловые режимы асинхронных двигателей в системах частотного управления: учеб. пособие / Р.Т. Шрейнер, А.В. Костылев, В.К. Кривовяз, С.И. Шилин. Под ред. проф. д.т.н. Р.Т. Шрейнера. - Екатеринбург: ГОУ ВПО «Рос. гос. проф.-пед. ун-т», 2008. - 361 с.
  3.      Шрейнер Р.Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. - Екатеринбург УРО РАН, 2000. - 654 с.

Обсуждение

Социальные комментарии Cackle