Системы видеосопровождения для беспилотного летательного аппарата | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 4 мая, печатный экземпляр отправим 8 мая.

Опубликовать статью в журнале

Автор:

Рубрика: Технические науки

Опубликовано в Молодой учёный №22 (102) ноябрь-2 2015 г.

Дата публикации: 07.11.2015

Статья просмотрена: 952 раза

Библиографическое описание:

Скидан, Д. Е. Системы видеосопровождения для беспилотного летательного аппарата / Д. Е. Скидан. — Текст : непосредственный // Молодой ученый. — 2015. — № 22 (102). — С. 187-191. — URL: https://moluch.ru/archive/102/23109/ (дата обращения: 20.04.2024).

 

В статье рассматриваются различные виды систем видеосопровождения, применяемых в беспилотных летательных аппаратах (далее по тексту — БПЛА). Проводится сравнительный анализ и обосновывается выбор типа сопровождения.

Ключевые слова: беспилотный летательный аппарат, оптический координатор, видеосопровождение.

 

Одной из важных областей применения системы обработки, хранения и анализа, фото- и видеоинформации являются системы обнаружения и сопровождения объектов. Эти системы применяются в летательных аппаратах разных классов, автомобилях, а также стационарных объектах. Целями для таких систем могут служить люди, летательные аппараты, автомобили и другая техника. При этом обнаружение и сопровождение возможно осуществлять в различной фоновой обстановке — например, лес, дома, дороги, облака. В зависимости от ситуаций, изображения целевых объектов могут иметь различные размеры — точечные или протяженные.

Особое значение системы обнаружения и сопровождения объектов имеют в военной технике. Современный этап развития вооружения обусловлен изменением характера угрозы в военных конфликтах:

          на первый план выдвигается борьба с террористическими группировками;

          более актуальной становится задача защиты государственных границ, в особенности большой протяженности, от проникновения вражеских сил;

          военные столкновения происходят в условиях отсутствия четко очерченных границ между противоборствующими сторонами, то есть теряется такое понятие как «линия фронта».

Изменившаяся оперативно-тактическая обстановка требует адекватной концепции построения современного вооружения. Выдвигаются требования бесконтактного уничтожения противника. При этом должна быть обеспечена высокая точность для прямого попадания в цель.

В настоящее время широкое развитие получают беспилотные летательные аппараты различных классов, поэтому создание перспективных систем вооружения невозможно без широкого применения систем обработки изображений.

Разрабатываемый разведывательно-ударный беспилотный летательный аппарат предназначается для поиска и уничтожения следующих сухопутных и надводных объектов:

          колонны бронетехники;

          доты, блиндажи, долговременные огневые сооружения;

          живая сила противника;

          надводные корабли и лодки;

Регистрация изображений, применяемая в таких системах, осуществляется цифровыми методами, а стабилизация применяется для компенсации собственных движений камеры и предотвращения смазывания изображения. При этом система стабилизации не в состоянии компенсировать движение объекта. Для решения задачи сопровождения объекта применяются системы слежения.

В зависимости от типа решаемой задачи построение систем возможно по различным схемам: одно-, двух- и трехканальным (каналы могут быть взаимосвязаны между собой или быть независимыми). Автоматическое сопровождение объекта оптико-механической системой предполагает непрерывное совмещение оптической оси видеодатчика системы с направлением на объект, осуществляемое приводами системы с использованием информации о координатах сопровождаемою объекта в последовательности кадров изображений видеодатчика.

Система видеосопровождения (СВС), укрупненная функциональная схема которой показана на рис. 1, содержит электрические приводы отработки заданных угловых положений рамок карданного подвеса, связанные механически с видеодатчиком (ВД), датчики угловых положений рамок исполнительного устройства относительно некоторого начального положения, вычислительное устройство (ВУ) для оценки координат сопровождаемого объекта в прямоугольной системе координат изображения.

C:\Users\Denis\YandexDisk\Книги\Диплом\Снимок.PNG

Рис. 1. Функциональная схема СВС

 

Задача СВС состоит в постоянном совмещении оптической оси видеодатчика с направлением на объект по данным блока обнаружения и определения координат (БООК). Основными факторами, влияющими на величину ошибки сопровождения, являются угловая скорость и ускорение изменения направления на объект, малая величина стандартной частоты формирования видеокадров, ошибки вычисления координат объекта из-за пиксельного (дискретного) характера представления изображения, величина запаздывания, вносимого БООК.

Для решения задачи непрерывного во времени совмещения оптической оси видеодатчика с направлением на объект достаточно двухосного карданного подвеса, что и делается в ряде случаев решения подобных задач. Однако установка разрабатываемой системы предполагается на БПЛА, который может совершать поступательное и вращательное движения. Поступательное движение носителя СВС практически не влияет на угловую траекторию объекта относительно системы сопровождения при больших расстояниях между объектом и носителем. Вращательное же движение носителя, вызванное качкой, вибрацией или маневрами, изменяет угловые координаты объекта относительно оптической оси ВД с большими скоростями и ускорениями. Так как в реальных условиях все механические транспортные средства подвержены качке, обусловленной воздействиями окружающей среды, на СВС могут накладываться жесткие требования к отработке быстроменяющихся угловых координат сопровождаемых объектов.

Кроме больших угловых скоростей и ускорений изменения направления на объект качка носителя приводит при использовании двухосного кардана к вращению ВД вокруг оптической оси и вращению изображения фоновой обстановки в последовательности обрабатываемых видеокадров. Вращение изображения существенно затрудняет решение задачи обнаружения и вычисления координат объекта, и требует оценки и компенсации вращения путем обработки изображения методами, требующими большого количества вычислений. Это приводит к увеличению времени запаздывания выдачи координат объекта в контур управления, что в свою очередь отрицательно сказывается на точности сопровождения.

Использование трехосного карданного подвеса в СВС, установленной на подвижном носителе, при наличии информации о текущих углах качки носителя дает возможность практически исключить указанные вращения изображения. Это позволяет с большей точностью и за меньшее время вычислять координаты сопровождаемого объекта, чем по повернутому изображению. Общая схема трехосного гироскопа представлена на рис. 2.

Рис. 2. СВС с трехосным карданным подвесом

 

Выбор типа оптической системы (зеркальная, линзовая или комбинированная зеркально-линзовая) определяется потребной величиной поля зрения. В зависимости от способа стабилизации линии визирования можно рассматривать 2 типа оптических схем:

          прокачивающаяся стабилизированная оптическая система, рис. 3;

          неподвижная относительно носителя приёмная оптическая система со стабилизацией поля зрения плоским зеркалом, размещенным на половине фокусного расстояния, рис. 4.

Рис. 3. Прокачивающаяся стабилизированная оптическая система

 

Схема кинемат.TIF

Рис. 4. Оптическая система со стабилизацией поля зрения плоским зеркалом

 

Основной недостаток прокачивающейся оптической системы — ограничения по диаметру входного зрачка Dвх. В тоже время, выполнение приёмной оптической системы в виде единой сборки упрощает юстировку, обеспечивает стабильность и качество изображения на углах пеленга.

Другим принципиальным вопросом проектирования оптического координатора является место размещения приёмника излучения: вместе с объективом или жестко закрепленный на корпусе гирокоординатора, рис. 5.

Рис. 5. Приёмник излучения, жестко закрепленный на корпусе гирокоординатора

 

Жестко связанный с объективом прокачивающийся приемник излучения обеспечивает простоту юстировки и стабильность характеристик в диапазоне рабочих температур и при действии вибраций. Основной недостаток этой схемы — необходимость прокачки соединительных проводов, что приводит к появлению момента тяжения, вызывающего уход гироскопа и, как следствие, к увеличению погрешности измерения угловой скорости. В системе с неподвижным приёмником излучения, усложняется сборка приёмной оптической системы, требующая, ещё и точного совмещения плоскости чувствительных элементов приёмника излучения с центром прокачки карданова подвеса гироскопа.

Анализ и выбор оптимального варианта проводился сравнительным многофакторным анализом по методике бенчмаркинга с помощью метода линейной свертки. В качестве альтернативных вариантов рассматривались следующие типы:

                   прокачивающаяся стабилизированную оптическую систему с приемником, скреплённым с объективом (альтернатива 1);

                   прокачивающаяся стабилизированную оптическую систему с приемником, скреплённым с гирокоординатором (альтернатива 2);

                   неподвижная относительно носителя приёмная оптическая система со стабилизацией поля зрения плоским зеркалом (альтернатива 3).

В качестве ключевых характеристик для оценивания были выбраны следующие:

  1.                Масса
  2.                Простота сборки и изготовления
  3.                Энергопотребление
  4.                Точность выделения координат цели
  5.                Экономичность

Экспертным методом была определена весовая шкала для ключевых характеристик. Результаты приведены в таблице 1.

Таблица 1

Весовая шкала для ключевых характеристик

Ключевая характеристика

Вес критерия

Масса

9

Простота сборки и изготовления

6

Поле зрения

10

Энергопотребление

7

Точность выделения координат цели

7

Экономичность

4

 

Оценка альтернативных вариантов (по 10-балльной шкале) и расчет суммарных значений представлены в таблице 2.

Таблица 2

Ключевая характеристика

Альтернативные варианты

Вес критерия

 1

 2

 3

Масса

7

7

8

9

Простота сборки и изготовления

9

6

6

6

Поле зрения

8

8

10

10

Энергопотребление

5

6

10

7

Точность выделения координат цели

5

8

7

7

Экономичность

7

5

7

4

Интегральная характеристика

215

217

255

 

 

В результате анализа выявлено, что неподвижная относительно носителя приёмная оптическая система со стабилизацией поля зрения плоским зеркалом (альтернатива № 3) в наибольшей степени соответствует требованиям для разрабатываемого разведывательно-ударного беспилотного летательного аппарата.

 

Литература:

 

  1.                Алпатов Б. А., Бабаян П. В. Методы обработки н анализа изображений в бортовых системах обнаружения и сопровождения объектов. Цифровая обработка сигналов. 2006, № 2, с. 45–51.
  2.                Балашов О. Е. Повышение точности сопровождения объектов в системе видеослежения // Вестник Рязанского государственного радиотехнического университета. Вып. 18. Рязань, 2006.
  3.                Государственный научный центр Российской Федерации ЦНИИ «Электроприбор». Оптические гироскопы / Ю. В. Филатов — Санкт-Петербург 2005, 139 с.
  4.                Компьютерное зрение. Современный подход.: Пер. с англ. — М.: Издательский дом «Вильяме», 2004. — 928 с.: ил. — Парал. тит. англ.
  5.                Методы автоматического обнаружения и сопровождения объектов. Обработка изображений и управление /Б. А. Алпатов, П. В. Бабаян, О. Е. Балашов, А. И. Степашкин. — М.: Радиотехника, 2008. — 176 е
  6.                Форсайт Д., Понс Ж. Компьютерное зрение. Современный подход. — М.: Издательский дом «Вильяме», 2004.
  7.                Цифровая обработка изображений Издание 3-е, исправленное и дополненное/ Гонсалес Р., Вудс P.
  8.                Цифровые методы обработки и распознавания бинарных изображений./ Фурман Я. А., Юрьев А. Н., Яншин В. В. — Красноярск: Изд-во Красноярского университета, 1992.—248 с.
Основные термины (генерируются автоматически): приемная оптическая система, плоское зеркало, стабилизация поля зрения, простота сборки, точность выделения координат цели, весовая шкала, ключевая характеристика, оптическая ось, оптическая система, оптический координатор.


Ключевые слова

беспилотный летательный аппарат, оптический координатор, видеосопровождение., видеосопровождение

Похожие статьи

Оптические световоды волоконно-оптических систем передачи...

Оптические волокна для волоконно-оптических систем передачи информации имеют цилиндрическую форму.

В результате, в градиентном волокне имеют место периодические биения светового поля с

Гауэр Дж. Оптические системы связи. — М.: Радио и связь, 1989.

Определение физических параметров радиационных процессов...

Таким образом, применение оптических датчиков приобретают особую важность, так как у них устраняются вышеуказанные недостатки. Такие датчики имеют высокую точность, стабильность на внешнее поле, легкость, минимальное энергопотребность и максимальное скорость обмена...

Лазерные системы как технологический ресурс информационной...

Система оптической лазерной связи (англ.

На принимающей оптическая система фокусирует излучение на фотодиод, который преобразует его в электрический сигнал.

На поле боя солдаты получат быструю и безопасную связь.

Анализ методов и систем регистрации окуломоторной активности

В статье даётся краткая характеристика видов движения глаз и приводится анализ методов и систем регистрации окуломоторной активности.

Излучатель создаёт переменное электромагнитное поле в приёмных катушках.

Вариант технического решения проблем выверки оптических...

Ключевые слова:выверка, изобретение, механический прицел, определение степени согласования оптической оси прицела с осью канала ствола, оптический прицел, снайперское оружие, техническое решение.

Анализ возможностей организации связи в полевом районе...

Беспроводные оптические системы используют диапазон инфракрасного излучения от 400 до 1400 нм [1].

Во-вторых простота монтажа аппаратуры не требует особых затрат и навыков, специального установочного оборудования и специально обученного персонала.

Оптическая система для обнаружения пожаров

Главными характеристиками оптической системы являются: масштаб изображения, светосила поле зрения и разрешающая способность. Обычно яркость предмета принимают постоянной.

Применение и перспективы использования легированных...

Для увеличения дальности волоконно-оптических систем передачи (ВОСП) используются усилители оптического сигнала (ретрансляторы). В оптоэлектронных ретрансляторах слабый оптический сигнал, принимаемый фотоприемником...

Автономная система ориентирования беспилотного летательного...

Специально разрабатываемые и создаваемые оптические и электронные системы предназначены для оснащения боевых и вспомогательных машин-роботов, навигационных, охранных, поисковых и

Техническое зрение в системах управления мобильными объектами.

Похожие статьи

Оптические световоды волоконно-оптических систем передачи...

Оптические волокна для волоконно-оптических систем передачи информации имеют цилиндрическую форму.

В результате, в градиентном волокне имеют место периодические биения светового поля с

Гауэр Дж. Оптические системы связи. — М.: Радио и связь, 1989.

Определение физических параметров радиационных процессов...

Таким образом, применение оптических датчиков приобретают особую важность, так как у них устраняются вышеуказанные недостатки. Такие датчики имеют высокую точность, стабильность на внешнее поле, легкость, минимальное энергопотребность и максимальное скорость обмена...

Лазерные системы как технологический ресурс информационной...

Система оптической лазерной связи (англ.

На принимающей оптическая система фокусирует излучение на фотодиод, который преобразует его в электрический сигнал.

На поле боя солдаты получат быструю и безопасную связь.

Анализ методов и систем регистрации окуломоторной активности

В статье даётся краткая характеристика видов движения глаз и приводится анализ методов и систем регистрации окуломоторной активности.

Излучатель создаёт переменное электромагнитное поле в приёмных катушках.

Вариант технического решения проблем выверки оптических...

Ключевые слова:выверка, изобретение, механический прицел, определение степени согласования оптической оси прицела с осью канала ствола, оптический прицел, снайперское оружие, техническое решение.

Анализ возможностей организации связи в полевом районе...

Беспроводные оптические системы используют диапазон инфракрасного излучения от 400 до 1400 нм [1].

Во-вторых простота монтажа аппаратуры не требует особых затрат и навыков, специального установочного оборудования и специально обученного персонала.

Оптическая система для обнаружения пожаров

Главными характеристиками оптической системы являются: масштаб изображения, светосила поле зрения и разрешающая способность. Обычно яркость предмета принимают постоянной.

Применение и перспективы использования легированных...

Для увеличения дальности волоконно-оптических систем передачи (ВОСП) используются усилители оптического сигнала (ретрансляторы). В оптоэлектронных ретрансляторах слабый оптический сигнал, принимаемый фотоприемником...

Автономная система ориентирования беспилотного летательного...

Специально разрабатываемые и создаваемые оптические и электронные системы предназначены для оснащения боевых и вспомогательных машин-роботов, навигационных, охранных, поисковых и

Техническое зрение в системах управления мобильными объектами.

Задать вопрос