Библиографическое описание:

Трифонова Д. А. Разработка интенсивной технологии комплексной переработки винограда // Молодой ученый. — 2015. — №21. — С. 225-228.

 

В последние десятилетия ученые смогли выявить факторы и механизмы множества губительных процессов, происходящих в человеческом организме. Причина различных заболеваний — повреждение клеток свободными радикалами. Как выяснилось, значительно замедлить разрушающее действие атома кислорода свободных радикалов могут антиоксиданты, содержащиеся в различных продуктах питания естественного происхождения [1, 2, 3, 4].

После переработки винограда на вино остаются выжимки, которые долгое время считались отходами. Однако они являются отличным источником антиоксидантов. В качестве объекта исследования использовались выжимки из винограда сорта «Левокумский». Выход выжимок из исследуемого сорта винограда составляет 27,4 %. Выжимки состоят из 25 % семян, 50 % ягодной кожуры и 25 % стеблей кисти (гребней).

Проведенный исследования химического состава ягодной кожуры винограда сорта «Левокумский» свидетельствовали, что кожица является богатым источником белка (12,7), жира (9,0) и флавоноидов (5,2 % на сухой остаток). Активная кислотность (рН) виноградных выжимок составила 3,7–3,9 [5, 6, 20].

С помощью приложений компьютерной химии, основанной на применении компьютерных методов и дискретной математики, были изучены молекулярные свойства следующих флавоноидов: ресвератрола, кверцетина, рутина, катехина, эпикатехина и эпикатехина галлата. На рис.1 приведена плотность распределения заряда ресвератрола.

Исследование структуры и молекулярных свойств ресвератрола (рис. 1 а, б) выявили низкие значения величины заряда в районе 7, 8 и 17 атомов кислорода (-0,239, -0,221, -0,231 эВ соответственно), эти данные позволяют сделать вывод о возможности использования этого химического соединения в качестве донора протона [7, 8].

Изучение поверхности распределения плотности заряда в целом показало гидрофобные свойства исследуемой молекулы (рис. 1 б) с наличием незначительных участков гидрофильных зон, о чем свидетельствует величина итоговой плотности заряда, равная 0,05 эВ. Аналогичные результаты были получены при исследовании других флавоноидов: кверцетина, рутина, катехина, эпикатехина и эпикатехин галлата. При исследовании молекулярных орбиталей во всех случаях подтверждены антиоксидантные свойства этих соединений [9, 10].

Достаточно малая величина плотности заряда (0,010–0,095 эВ) свидетельствует о преобладании гидрофобных свойств у исследуемых молекул, следовательно, экстракция флавоноидов полярными растворителями мало осуществима, что позволяет сделать вывод об использования полярных растворителей при извлечении сахарозы и кислот [11, 12, 13].

Режимы экстракции виноградных выжимок определялись в лабораторном реакторе, соединенном с термостатом. Изучались следующие параметры: температура обработки, время экстрагирования, активная кислотность (рН) и концентрация поваренной соли (NaCl) в растворе [19].

По результатам исследований была разработана нейронная сеть в виде многослойного персептрона и на алгоритмическом языке Pascal создан массив входных переменных (t, τ, рН, CNaCI), в котором значения функциональных показателей были рассчитаны с помощью нейронной сети. В результате оптимизации с использованием метода многомерного шкалирования выполнен анализ контурной поверхности. По полученным данным установлены оптимальные режимы экстракции в полярных растворителях (9,9–11,2 % от массы выжимок), причем степень экстракции флавоноидов при установленных параметрах обработки минимальна и составляла 0,5–2,3 %.

Рис. 1 Исследование поверхности распределения плотности заряда молекулы ресвератрола: а) — структурная формула; б) — поверхность распределения плотности заряда

 

По окончанию экстракции виноградные выжимки отфильтровывались от раствора, измельчались до размеров частиц не более 50 мкм и сушились при температуре 75–80 ºС до содержания влаги не более 8 %. Готовый продукт представлял собой порошкообразную добавку без выраженного запаха, темно-вишневого цвета.

В высушенных и измельченных образцах исследовались сенсорные характеристики и химический состав. Анализ химического состава пищевой антиоксидантной добавки выявил, что предложенные технологические параметры позволяют извлечь 74,1 % сахаров, 80,0 % липидов и 3,3 % минеральных веществ от общего количества в исходном сырье. Титруемые кислоты в пищевой добавке не обнаружены, очевидно это обусловлено использованием экстрагента с щелочным значением активной кислотности (рН 7,0). Увеличение содержания флавоноидов (5,3 % на сухой остаток) обусловлено снижением доли белка, липидов, сахаров и титруемых кислот в высушенной пищевой добавке [14, 15].

Антиоксидантная активность определялась путем изучения скорости окисления липидов по изменению перекисного числа, характеризующего накопление первичных продуктов распада липидов. Показатель количества продуктов окисления обратно пропорционален показателю активности антиоксиданта. В качестве модельной липидной системы использовалось масло сливочное (несоленое с массовой долей жира 72,5 %). Результаты опытного образца с антиоксидантной добавкой имели более низкое значение перекисного числа, чем контрольного (0,033 против 0,055 ммоль активного кислорода / кг).

Для определения возможности использования антиоксидантной добавкой в технологии мясопродуктов проведены исследования ее функционально-технологических свойств [16, 17, 18].

Данные результатов исследований свидетельствуют о том, что пищевая добавка имеет довольно высокие значения водопоглощающей (147 %), жиропоглащающей (7,2 г жира /г пищевой добавки), водоудерживающей (13,8 г воды/г пищевой добавки) способностей и набухаемости (182 %), что позволяет рекомендовать ее использование в технологии мясопродуктов.

 

Литература:

 

  1.                Омаров, Р. С. Перспективы использования цитрата натрия в деликатесных мясных продуктах / Р. С. Омаров, С. Н. Шлыков, О. В. Сычева // Пищевая промышленность. 2011. № 12. С. 56–57.
  2.                Омаров, Р. С. Технологические решения для производства ветчинных реструктурированных продуктов / Р. С. Омаров, С. Н. Шлыков, О. В. Сычева // Мясная индустрия. 2013. № 2. С. 66–68.
  3.                Молочников, В. В. Использование фитопрепаратов в рецептурных композициях мясных продуктов / В. В. Молочников, И. А. Трубина, В. В. Садовой, С. Н. Шлыков // Пищевая промышленность. 2008. № 6. С. 64.
  4.                Омаров, Р. С. Использование концентрата Лакт-ОН в производстве деликатесных мясных продуктов / Р. С. Омаров, С. Н. Шлыков, И. А. Трубина, А. Б. Кравец, А. Д. Лодыгин // Вестник Российской академии сельскохозяйственных наук. 2011. № 5. С. 78–79.
  5.                Sadovoi, V. V. Аntioxidant food supplement fortified with flavonoids / V. V. Sadovoi, S. N. Shlykov, R. S. Omarov, T. V. Shchedrina // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014. Т. 5. № 5. С. 1530–1537.
  6.                Садовой, В. В. Антиоксидантная пищевая добавка из ягодной кожуры красного винограда / В. В. Садовой, Т. В. Щедрина, С. Н. Шлыков, И. А. Трубина, М. А. Селимов // Пищевая промышленность. 2013. № 12. С. 68–70.
  7.                Храмцов, А. Г. Возможности использования лактозы и лактулозы в рецептурных композициях мясопродуктов / А. Г. Храмцов, В. В. Садовой, О. Ю. Шматько, С. Н. Шлыков, С. А. Левченко // Вестник Российской академии сельскохозяйственных наук. 2008. № 4. С. 87–88.
  8.                Храмцов, А. Г. Разработка технологии получения препаратов пищевых волокон для профилактического питания / А. Г. Храмцов, Ю. А. Анисимова, В. В. Садовой, С. Н. Шлыков, О. Ю. Шматько // Вестник Российской академии сельскохозяйственных наук. 2009. № 2. С. 91–92.
  9.                Шлыков, С. Н. Исследование влияния ультразвукового акустического поля на эмульгированые фаршевые системы и качественные показатели готового продукта / С. Н. Шлыков, Р. С. Омаров, Т. В. Вобликова // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2013. № 93. С. 708–722.
  10.            Trukhachev, V. I. Development of technology for food for people with hypersthenic body type / V. I. Trukhachev, V. V. Sadovoy, S. N. Shlykov, R. S. Omarov // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015. Т. 6. № 2. С. 1347–1352.
  11.            Вобликова, Т. В. Изучение влияния термической бактериальной санации козьего молока на его технологические и микробиологические показатели в процессе хранения / Т. В. Вобликова, Н. Н. Рылкина, Д. Ю. Буеракова, С. Н. Шлыков // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2012. № 83. С. 425–435.
  12.            Шлыков, С. Н. Разработка технологий рациональных эмульгированных мясопродуктов с использованием молочных белково-углеводных препаратов и ультразвукового акустического поля / Шлыков С. Н. // автореферат диссертации на соискание ученой степени кандидата технических наук / Северо-Кавказский государственный технический университет. Ставрополь, 2007.
  13.            Омаров, Р. С. Использование молочных белков в производстве деликатесных мясопродуктов / Р. С. Омаров, С. Н. Шлыков, О. В. Сычева, В. В. Садовой // Fleischwirtschaft. 2011. № 1. С. 55–57.
  14.            Омаров, Р. С. Белковые структурообразователи для ветчинных мясных продуктов / Р. С. Омаров, О. В. Сычева, С. Н. Шлыков, В. В. Михайленко // Fleischwirtschaft. 2014. № 1. С. 49–52.
  15.            Шматько, О. Ю. Биологически активные добавки и анализ возможности их использования в рецептурных композициях функциональных мясопродуктов / О. Ю. Шматько, С. Н. Шлыков, В. В. Садовой // В сборнике: Актуальные вопросы зоотехнической науки и практики как основа улучшения продуктивных качеств и здоровья сельскохозяйственных животных V Международная научно-практическая конференция. 2007. С. 243–248.
  16.            Шлыков, С. Н. Разработка технологий рациональных эмульгированных мясопродуктов с использованием молочных белково-углеводных препаратов и ультразвукового акустического поля / Шлыков С. Н. // диссертация на соискание ученой степени кандидата технических наук / Ставрополь, 2007.
  17.            Gabriyelyan, S.Z., I. N. Vorotnikov, M. A. Mastepanenko, R. S. Omarov, and S. N. Shlykov 2015. Formation of the Physico-Chemical Parameters of Meat Products in the Processing Of Ultrasonic Acoustic Field. Research Journal of Pharmaceutical, Biological and Chemical Sciences. http://www.rjpbcs.com/pdf/2015_6(3)/ [184].pdf
  18.            Омаров, Р. С. Белки животного происхождения в производстве мясных продуктов / Р. С. Омаров, О. В. Сычева, С. Н. Шлыков // Мясные технологии. 2011. № 3. С.
  19.            Омаров, Р. С. Разработка специализированного мясного продукта для адаптации организма к повышенным физическим нагрузкам / Р. С. Омаров // Наука и современность: сборник статей Международной научно- практической конференции (04 апреля 2015 г, г. Уфа) в 2 ч. Ч.2. — Уфа: Аэтерна, 2015. — С. 134–137.
  20.            Омаров, Р. С. Значение белкового питания в рационе спортсменов / Р. С. Омаров // Наука и современность: сборник статей Международной научно- практической конференции (04 апреля 2015 г, г. Уфа) в 2 ч. Ч.2. — Уфа: Аэтерна, 2015. — С. 137–140.

Обсуждение

Социальные комментарии Cackle