Библиографическое описание:

Мальцева Т. В. Построение непараметрической модели замкнутой ЛДС // Молодой ученый. — 2009. — №10. — С. 66-71.

Имеется объект, описываемый линейным дифференциальным уравнением. Устройство управления этим объектом представляет собой параметрический регулятор (П-, ПИ-, ПИД-регулятор). Объект управления и управляющее устройство образуют замкнутую линейную динамическую систему с единичной отрицательной обратной связью – макрообъект (рисунок 1).

 

 

Рис. 1 Схема замкнутой системы управления

 

На рисунке приняты следующие обозначения: x(t) – выход объекта, u(t) – вход объекта, - задающее воздействие,  - помехи, действующие на объект и в каналах измерения.

Ставится задача построения модели замкнутой ЛДС (макрообъекта) в случае малой априорной информации (имеются выборочные данные входных, выходных переменных, данные о структуре исследуемой системы отсутствуют). Предполагается возможность постановки эксперимента. В каналах измерения действует центрированная помеха с ограниченной дисперсией (что весьма часто встречается на практике и, таким образом, не идеализирует решаемую задачу).

Остановимся подробнее на управляющем устройстве. Как было указано ранее, в качестве такого устройства в данном случае выступает параметрический регулятор. Регуляторы в подавляющем большинстве работают по принципу отрицательной обратной связи с целью компенсировать внешние возмущения, действующие на объект управления, и обработать заданный извне или заложенный в системе закон управления.

Пропорционально-интегрально-дифференциальный регулятор, используемый в данной работе, – устройство в цепи обратной связи, используемое в системах автоматического управления для поддержания заданного значения измеряемого параметра. ПИД-регулятор измеряет отклонение стабилизируемой величины от заданного значения (задающего воздействия) и выдает управляющий сигнал, являющийся суммой трех слагаемых, первое из которых пропорционально этому отклонению, второе пропорционально интегралу отклонения и третье пропорционально производной отклонения (производной измеряемой величины).

Таким образом, выходной сигнал регулятора определяется тремя слагаемыми [5]:

,                                     (1)

где Kпр, Kинт, Kдиф – коэффициенты усиления соответствующих составляющих регулятора, e(t) – невязка между выходом объекта и задающим воздействием (рассогласование).

Настройка аналогового регулятора сводится к настройке его параметров, которая может быть произведена согласно критериям устойчивости Гурвица и Михайлова при наличии явного вида передаточных функций объекта и корректирующих звеньев. В связи с тем, что на практике структура объекта управления неизвестна, настройка параметров аналоговых регуляторов производится эмпирически, что представляет определенную сложность, а также требует временных и финансовых затрат.

Не меньшую сложность представляет задача построения модели замкнутой системы. При отсутствии каких-либо сведений о структуре объекта управления построение параметрической модели весьма проблематично. При включении корректирующего устройства и замыкании отрицательной обратной связью структура исследуемой системы становится сложнее структуры объекта управления, что в свою очередь увеличивает число определяемых параметров, а значит и сложность параметрического моделирования. Усложнение структуры можно продемонстрировать, используя структурную схему замкнутой системы, позволяющую получить передаточную функцию замкнутой системы по имеющимся передаточным функциям входящих в нее звеньев [5]. Структурная схема замкнутой системы показана на рисунке 2.

 

Рис. 2 Структурная схема системы с отрицательной обратной связью

Рассмотрим случай использования ПИД-регулятора (рисунок 3), подключение которого (с учетом условия реализуемости технического устройства) приводит к дифференциальному уравнению замкнутой системы, на два порядка большему дифференциального уравнения объекта управления.

 

Рис. 3 Структурная схема ПИД-регулятора

 

Условием реализуемости технического устройства является следующее требование в передаточной функции  данного устройства:

                              (2)

то есть старшая производная от входного воздействия по времени не превосходит старшей производной от выходного сигнала по времени.

 Применяя преобразование Лапласа к формуле ПИД-регулятора (1), получаем передаточную функцию следующего вида:

.                                   (3)

Очевидно, что степень полинома числителя передаточной функции (3) больше степени полинома знаменателя, то есть условие реализуемости (2) не выполняется. Для того чтобы условие (2) было выполнено, достаточно сделать небольшое допущение – представить передаточную функцию дифференциальной составляющей в следующем виде:

 ,                                                         (4)

где коэффициент , то есть выбирается как можно меньшим, для того чтобы максимально приблизить дифференциальную составляющую, учитывающую условие реализуемости технического устройства (2) к теоретическому виду (3).

С учетом (4) передаточная функция ПИД-регулятора, удовлетворяющая условию реализуемости технического устройства (2), примет вид:

.                                                 (5)

Согласно структурной схеме (см. рисунок 2) получаем передаточную функцию замкнутой системы и устанавливаем, что если исходное уравнение объекта имеет третий порядок

                               (6)

то уравнение замкнутой системы имеет пятый порядок, и число оцениваемых параметров увеличивается почти вдвое*:

               (7)

что значительно усложняет процесс параметрического моделирования:

________________________

* Рассмотрим вопрос получения дифференциального уравнения замкнутой системы с единичной отрицательной обратной связью при известном дифференциальном уравнении объекта управления. Пусть объект управления описывается уравнением вида (6). Применяя к нему преобразование Лапласа, получим передаточную функцию так называемой неизменяемой части системы.

 ,          где .                                        (7а)

Согласно рисунку 3 с учетом условия реализуемости технического устройства (2) передаточная функция ПИД-регулятора имеет вид (5).

 Разомкнутая система (см. рисунок 2) представляет собой последовательное соединение объекта управления и регулятора, а, следовательно, передаточная функция разомкнутой системы имеет вид (в соответствии с правилом преобразования цепей):

.   (7б)

Используя правило Мейсона для замкнутого контура с единичной отрицательной обратной связью:

,                                                                      (7в)

получим передаточную функцию замкнутой системы:

.(7г)

Таким образом, вводя соответствующие обозначения коэффициентов полиномов числителя и знаменателя (7г) и применяя обратное преобразование Лапласа, получаем дифференциальное уравнение замкнутой системы в виде (7).

Чтобы избежать сложности параметрического подхода, предлагается применить для построения модели замкнутой линейной динамической системы непараметрический подход, основанный на оценивании весовой функции системы ) (путем предварительного получения непараметрической оценки переходной характеристики замкнутой системы  по имеющимся выборочным данным) и для получения динамической непараметрической модели замкнутой ЛДС дальнейшей ее подстановке в интеграл Дюамеля [2]:

,                                      (8)

где в качестве входного сигнала u(t) в силу специфики задачи (макрообъект моделирования – замкнутая система) выступает задающее воздействие .

Оценивание переходной характеристики производится по выборочным данным (поэтому необходима управляемость входного сигнала объекта) как непараметрическая оценка регрессии [3, 4]:

 ,                                     (9)

где n – объем выборочных данных; С – настраиваемый коэффициент непараметрического алгоритма – коэффициент размытости; ki – выборочные измерения переходной характеристики объекта – реакция системы на функцию Хэвисайда [5]:

                                                    (10)

 

Весовая функция, входящая в интеграл Дюамеля (8), находится как производная от переходной характеристики по времени:

                                                     (11)

и представляет собой реакцию системы на дельта-функцию Дирака, являющуюся производной от функции Хэвисайда по времени. Промежуточное измерение переходной характеристики необходимо потому, что используемая в модели весовая функция вычисляется по этим данным, так как непосредственное измерение весовой функции практически не осуществимо: на вход системы при этом необходимо подавать бесконечно большой сигнал, что в технических устройствах не реализуемо.

Настройка коэффициента размытости C производится из условия минимума среднеквадратичного критерия:

 .                              (12)

Приведем результаты построения непараметрической модели для замкнутой системы с единичной отрицательной обратной связью, которую составляют линейный динамический объект, описываемый дифференциальным уравнением третьего порядка (6), и ПИД-регулятор (1).

Первоначально на вход системы необходимо подать единичное ступенчатое воздействие (10). Следует отметить, что для замкнутой системы входным сигналом будет являться задающее воздействие (то есть то, к чему необходимо привести систему), а, следовательно, в качестве переходной характеристики системы при хорошей работе ПИД-регулятора мы должны получить некую кривую, сходящуюся к единице.

По полученным выборочным данным строится непараметрическая оценка переходной характеристики (9), приведенная в сравнении с зашумленными данными выборки на рисунке 4.

Рис.4 Непараметрическая оценка переходной характеристики системы

 

На основе (9) получаем оценку весовой функции, которую необходимо сгладить, используя, например, непараметрическую оценку вида (9), и подставить в интеграл Дюамеля (8), где в качестве входного сигнала используется любое воздействие. Полученная непараметрическая модель в сравнении с истинным поведением замкнутой линейной динамической системы с ПИД-регулятором и снятыми выборочными данными (реакция системы на входное задающее воздействие) при задающем синусоидальном воздействии приведены на рисунке 5. Модель достаточно хорошо описывает систему, а неточности могут быть устранены, например, повторной настройкой коэффициента размытости на стадии реакции модели (8) на единичное ступенчатое воздействие, которая как раз будет представлять собой переходную характеристику.

Рис. 5 Результаты построения непараметрической модели замкнутой ЛДС

 

Таким образом, непараметрический метод, основанный на использовании интеграла Дюамеля, позволяет получать адекватные динамические модели систем при условии, что входной сигнал, поступающий в систему (для замкнутой системы, задающее воздействие), является управляемым. Это требование необходимо для получения используемой в алгоритме оценки весовой функции динамической системы. Наряду с управляемостью требуется наличие информативной выборки, от качества которой напрямую зависит получаемый результат. Отметим также, что данный метод не позволяет получать параметрические модели систем.

Тем не менее, указанный метод достаточно прост в реализации, универсален и, при выполнении условий применимости, позволяет получать непараметрические модели линейных динамических систем разной сложности (не зависимо от типа подключенного параметрического регулятора и порядка дифференциального уравнения объекта).  Влияние помех, действующих в каналах измерений, может быть уменьшено, например, выбором при настройке коэффициента размытости критерия, не использующего в явном виде выборочные данные, что повышает степень сглаживания непараметрических оценок и может привести к улучшению модели.

Адекватная модель в свою очередь позволяет перейти к задаче управления замкнутой ЛДС как макрообъектом, повышая при этом качество переходных процессов не путем настройки параметров аналогового регулятора, а путем применения более рациональных методов [1].

 

Литература

1. Мальцева Т.В. Непараметрическое управление замкнутой ЛДС/ Т.В. Мальцева// Материалы VIII Всероссийской конференции молодых ученых по математическому моделированию и информационным технологиям. – Новосибирск, 2007, с. 59.

2. Медведев А.В. Непараметрические системы адаптации/ А.В.Медведев. – Новосибирск: Наука, 1983. – 176 с.   

3. Надарая Э.А. О непараметрических оценках плотности вероятности и регрессии// Теория вероятностей и ее применение. 1965. Т.10(1).  С.199-203.

4. Watson G. Smooth regression analysis //Sankhya, ser.A. 1965. Vol.26, part 4.  P.~359-372.

5. Юревич Е.И. Теория автоматического управления/ Е.И.Юревич. – СПб: БХВ-Петербург, 2007. – 560с.

 

 

 

 

Основные термины: замкнутой системы, отрицательной обратной связью, модели замкнутой, модели замкнутой ЛДС, переходной характеристики, построения модели замкнутой, непараметрической модели замкнутой, единичной отрицательной обратной, объекта управления, реализуемости технического устройства, функцию замкнутой системы, уравнение замкнутой системы, передаточную функцию замкнутой, замкнутой линейной динамической, модели замкнутой системы, весовой функции, динамической системы, переходной характеристики системы, схема замкнутой системы, уравнению замкнутой системы

Обсуждение

Социальные комментарии Cackle